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ABSTRACT 

Over-the-horizon radar (OTHR) and microwave radar networks can to- 
gether generate track data over a wide surveillance region. However the data 
is often subject to ambiguity and uncertainty due to the complexities of the HF 
signal propagation environment, which give rise to multipath OTHR tracks, as 
well as ambiguities in target associations between multiple microwave radars. 
This report describes an association and fusion algorithm which deals with 
both sources of uncertainty. The algorithm is capable of fusing OTHR multi- 
path tracks and non-OTHR tracks (e.g. microwave radar or GPS), as well as 
dealing with multipath tracks from OTHR networks. The algorithm achieves 
this through a very general, model based, approach which deals with multi- 
path effects as well as asynchronicity between sources of data. Importantly, 
the approach incorporates track history in its computation of association prob- 
abilities and fused estimate calculations, thus exploiting temporal as well as 
instantaneous spatial relationships between tracks. 
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Over-the-Horizon Radar Multipath and Multisensor Track 
Fusion Algorithm Development 

EXECUTIVE SUMMARY 

The use of over-the-horizon radar (OTHR) in conjunction with microwave radar (MR) 
networks enables surveillance over a large region of land/sea, with potentially greater re- 
liability and accuracy in target acquisition and tracking over a single radar. For example, 
the accuracy and clarity of OTHR data can be enhanced by fusing OTHR tracks with asso- 
ciated microwave radar tracks which are known with greater precision and are not subject 
to multipath effects of the sort that plague OTHR. To achieve this potential, substantial 
challenges which occur due to ambiguities and uncertainties in target associations between 
multiple microwave radars as well as multipath OTHR tracks, must be overcome. Multiple 
target tracks arise in OTHR surveillance due to multiple ionospheric propagation paths 
between targets and radar locations. The use of multiple microwave radars also leads to 
multiple tracks for single targets. Hence target track association and fusion algorithms for 
OTHR/MR networks are required to give a unified picture of the surveillance region with 
one track per target in ground coordinates. 

This report describes an algorithm for the association and fusion of multipath OTHR 
tracks as well as microwave radar tracks which fall within the OTHR surveillance region. 
Both multiple microwave radars and multiple OTHRs can be accommodated by the algo- 
rithm. Global Positioning System (GPS) reports from commercial aircraft, air lanes and 
airfield locations could also be incorporated if required. This algorithm can be used to 
enhance the value of the OTHR surveillance data from the Jindalee Facility Alice Springs 
(JFAS) and the Jindalee Over-the-horizon Radar Network (JÖRN) for air picture compi- 
lation and to aid the integration of OTHR into a multi-sensor air surveillance system. At 
the time of writing this report, testing of the algorithm with multipath OTHR tracks has 
commenced on a test-bed as well as on a prototype version in an operational OTHR. The 
results of testing to date indicate that, at the present state of development, the algorithm 
can be used in a semi-automated fashion to give advice to an operator. However, higher 
levels of automation can be expected with further development. 

in 
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Glossary 

Abbreviations: 

ADF   Australian Defence Force 

CI   Covariance Intersection 

CR   Coordinate Registration 

DMPTF   Dynamic Multipath Track Fusion 

GPS   Global Positioning System 

JFAS   Jindalee Facility Alice Springs 

JÖRN   Jindalee Over-the-horizon Radar Network 

MHT   Multiple Hypothesis Tracking 

MPTF   Multipath Track Fusion 

NN   Nearest Neighbour 

OTHR   Over-the-Horizon Radar 

PDA   Probabilistic Data Association 

pdf  Probability Density Function 

SSD   Surveillance Systems Division 

TSF   Tracking and Sensor Fusion 

Mathematical Notation: 

a   target azimuth in ground coordinates 

Aj (k)   azimuth component of ipj (k) 

Bm..nK    the number of path independent hypotheses that originate from hypothesis 
An        in the path independent hypothesis tree; note that Bni..nK = Nni.,nK + 1 

@T:   P i ^T' i' *e' $i3 *s ^e a P™0™ probability of 0- J 

5j (k)   the measurements (in radar coordinates) that are used by a tracking algorithm to 
produce the estimates ipj (k) 

A^ (k)   the sequence of measurements <5i (k) ,.-,öj (k) 

IX 
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Dk   all the (radar coordinate) track data available up to and including update fc 

E{.}   mathematical expectation 

F (fc — 1) the state transition matrix of a target for the time interval between updates 
(k — 1) and k 

H measurement matrix used for transforming estimates in state space to predicted mea- 
surements (both in ground coordinates) 

J (k)   the number of multipath tracks to be associated and fused at update k 

Ani„2„nK the (composite, path independent) hypothesis that Tj are associated with targets 
rij, j — 1,2, ..,K, K < J. Assuming there are no false tracks, the values that can 
be taken by rij are: rij G {l,2,..,Bni..nj-i}- #m..n_,_i is defined below. 

^nin^.ri™* tne (composite, path dependent) hypothesis that TJ are associated with targets 
rij, and propagation paths rrij, j = 1,2,.., if, K < J, respectively. Assuming 
there are no false tracks, the values that can be taken by rij and rrij are: rij € 
{1,2,..,Bn^.nj^} and rrij € {1,2, ..,Mj}. Bni..nj_, is defined above. 

JA^J the (single, path dependent) hypothesis that Tj is associated with target rij G 
{l,2,..,Bfll..n._1} and propagation path rrij € {l,2,..,Mj} 

A   likelihood function 

rrij   index representing the propagation path associated with track j 

Mj   the number of propagation paths associated with track j 

rij   index representing the target associated with track j 

Nm..nK   the number of targets associated with hypothesis Ani..„K 

N(x;x,P) pdf of a normal (Gaussian) random vector x with mean x and covariance 
matrix P 

p(.)   probability density function of a (continuous) random variable 

P {.}   probability of an event 

Pj1 (fc)   covariance matrix of x£ (fc), ie, pf1 (k) = E {xf (k) x\ (k)'} 

P™j (k)   covariance matrix of y™3 (k), ie, P™3 (k) = E I y™3 (k) y™3 (k)' \ 

P-™3 (k)   cross covariance matrix of x^ (fc) and y™3 (k), ie, Pi;
mj (k) = E I x\ (k) y™3 (k)' > 

P™3   {k)   cross covariance matrix of y™3 (k) and x\ (fc), ie, P™3   (fc) = E < y™3 (fc) x-1 (fc)' \ 

(ft1-3   the event that "track r;, j — 1,.., J is associated with target rij, rij €. {1,2,.., J}" 
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ipj (k)   estimate k, in radar coordinates, of track j, where k = 0,1,2,... 

W (k)   the estimates ipi (k), ..,ipj (k) 

Qk   process noise covariance matrix, ie, Qk — E [v (k) v (k)'] 

r   target range in ground coordinates 

r•'(k)   range component of y™3 (k) 

Rj (k)   range component of ipj (k) 

R™3' (k)   covariance matrix of zj1' (k), ie, R™3' (k) 4 E iz™3 (k) (zj3 (fc))'} 

Sj   the set {rrij : rrij — rrij—\ if rij — rij-i, m,j = rrij-2 if rij = nj-2i---, Wj — ^i if 
rij = n\} 

ST' W   covariance matrix of f z™3 (k) — z\ (k)J 

ti   target i, i = 1,..,T 

T   the number of targets associated with a hypothesis 

Tmj (k)   covariance matrix of iy?' (k) — x\ (k)) 

Tj   track j, j — 1,.., J in radar coordinates 

Ö 3   the event "track Tj, j = 1,.., J is associated with propagation via propagation path 
rrij, rrij G {l,2,..,Mf}" 

Ut,-
mj (A;)   cross covariance matrix of x^1 (fe) and z!™J (k), ie, C/ymj (A;) = E < x^ (fc) (5™J (k) j  > 

[/"^   (fc)   cross covariance matrix of z™3 (k) and x^ (k), ie, U"*3   (k) = E I z™3 (k) (x{* (k)) > 

v (k)   zero-mean white Gaussian target process noise at update (k) 

Vm   "volume" in measurement space in which a target can be 

Vs   "volume" in state space in which a target can be 

X{ (k)   the state vector for target ti (ie, its true state) at time k 

xj1 (k)   state estimate/prediction of target ti at time k resulting from the fusion of h earlier 
state estimates at time k and the fused estimate from time k — 1 

x^ (k)   error corresponding to the estimate xf (fc), ie, x^ (k) = Xj (k) — x^ (k) 

y™3 (fc)   the estimate in ground coordinates corresponding to ipj (k) assuming propagation 
path rrij 

XI 
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y™3 (k)   error corresponding to the estimate y™j (k), ie, y™3 (k) = xt (k) - y™1 (k) 

zmj (k) the measurement in ground coordinates corresponding to 8j (k) assuming propa- 
gation path rrij 

z\ (k) the measurement prediction (the expected value) for target U at time k resulting 
from the fusion of h earlier state estimates at time k and the fused estimate from 
time k — 1 

zmj (k)   error corresponding to the measurement z™} (fc), ie, z™3 (k) = Hxi (k) - z; 
3 (k) 

Xll 
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1    Introduction 

In skywave over-the-horizon radar (OTHR), ionospheric refraction of HF signals is ex- 
ploited to detect and track targets well beyond the line-of-sight horizon, thus providing 
surveillance over much larger areas than is possible with conventional ground based mi- 
crowave radar. Unfortunately, ionospheric propagation conditions are usually such that 
several propagation paths exist between the target and the radar site, thus giving multiple 
resolved measurements for a single target. Figure 1 shows a simple model of the multiple 
propagation path phenomenon. The figure shows a transmitter at point O and target at 
point P, with two ionospheric layers, the E layer and the F layer, via which the transmitted 
and returned signals can travel. A signal transmitted from point O can travel via one of 
two paths to point P, and similarly, a signal returning from point P to point O can travel 
by one of two paths. If the path lengths for the four path combinations are sufficiently 
different for resolved returns to occur, this leads to four "apparent" targets when there is 
actually only one. 

Flayer 

yMMmzvTTTTTTTTT^ 

Figure 1: Multipath propagation via ionospheric E and F layers 

Current practice is for OTHR tracking to be implemented in radar coordinates (group 
range, group range rate, apparent azimuth and apparent azimuth rate), with the major 
reason being to limit computational requirements. The result is that when multipath 
propagation conditions exist, multiple radar tracks are formed for each target. In situ- 
ations where there is an unknown number of targets, the challenge is then to correctly 
associate radar tracks with targets and to subsequently estimate target locations in ground 
coordinates by fusing associated radar track data. Many plausible track-to-target associ- 
ations may exist, so the association ambiguity must be resolved. 

There have been several research efforts investigating the association and fusion of 
multipath OTHR tracks which have been reported in the literature [11], [12], [8], [28] as 
well as an approach which directly performs tracking of a target in ground coordinates 
using multipath measurements in the presence of clutter [22]. Of these, the work de- 
scribed in [8], [28], [22] represent early efforts sponsored by, or performed in, Surveillance 
Systems Division (SSD). Subsequently, a substantial effort was made in SSD to develop a 
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new algorithm for multipath track fusion (MPTF) by Percival and White. In the MPTF 
approach, all track-to-target association hypotheses are recursively constructed, the prob- 
ability of each hypothesis is calculated and the fused target states within each hypothesis 
are evaluated. The approach is described in references [17], [18] and [19]. 

Although the MPTF technique was a promising approach to the problem, it suffered 
from the following deficiencies. The algorithm treats each track update independently, 
which results in fusion of track estimates without taking into account track history. Addi- 
tionaly, the algorithm does not have an effective hypothesis management strategy, making 
it impractical in all but the most trivial circumstances. In the absence of a hypothesis 
management strategy, the number of association hypotheses produced by the MPTF al- 
gorithm quickly becomes too large for real time execution. Some preliminary work on 
overcoming the difficulties in hypothesis management, which was done by Percival and 
White, is described in Refs. [18] and [19]; however the approach proved ineffective for rea- 
sons that will be described later. A further, and very restrictive, limitation of the MPTF 
algorithm is its inability to deal with asynchronous track data. The outcome is that track 
data from multiple asynchronous sensors cannot be accomodated. Thus the algorithm 
cannot exploit synergies that exist when multiple OTHRs, microwave radars and other 
sensors are used in conjunction. 

The use of multiple OTHRs in conjunction with microwave radar networks, as well as 
other track level information such as GPS reports, offers the potential of surveillance over 
a large region of the earth's surface, with substantially improved reliability and accuracy in 
target acquisition and tracking over a single OTHR. Skywave OTHR offers the advantage 
of radar coverage over a large area of the earth's surface as well as the ability to detect 
low flying targets well past the horizon, but suffers from drawbacks which include multi- 
ple resolved measurements of individual targets and generally inaccurate registration. In 
contrast, microwave radar offers much higher measurement accuracy and is largely free of 
the multiple measurement problem associated with OTHR. However a single microwave 
radar has a very limited coverage area in comparison with OTHR, particularly in the 
case of a ground based radar and low flying targets. GPS reports have the advantage of 
even greater accuracy, but have only limited availability and are certainly not available 
for unfriendly targets. Fusing the OTHR measurements with microwave radar measure- 
ments and GPS reports, where available, thus enables the advantages of each sensor to be 
utilized in areas of overlapping coverage, to achieve better accuracy and reduced associ- 
ation ambiguity. Also, a target that is temporarily in a Doppler blind-zone of one radar 
may be visible to another radar; hence track continuity can be enhanced by multi-sensor 
fusion. Furthermore, by taking advantage of spatial continuity of the ionospheric layers, 
information gained by fusing OTHR, microwave radar and GPS measurements in areas of 
overlapping coverage can be used to more accurately determine ionospheric layer heights 
in these areas, and by extrapolation, in surrounding areas. Hence the performance of the 
OTHR itself can be improved, not only where there is overlapping coverage, but also for 
areas nearby. 

To perform fusion of OTHR, microwave radar and GPS measurements, the major task 
is again to correctly associate measurements, which in this case are from multiple sensors, 
with targets and to subsequently estimate target locations in ground coordinates by fusing 
associated radar (and GPS) track data to give a unified picture of the surveillance region. 
Because of the similarities between the tasks of fusing multipath tracks to that of fusing 
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multisensor tracks, it seems natural, as well as very desirable, that a single algorithm 
should be developed for both problems. 

This report describes, a new dynamic multipath track fusion (DMPTF) algorithm 
which is capable of performing association and fusion of multipath OTHR tracks from 
multiple OTHRs as well as multiple microwave radar tracks which fall within the OTHR 
surveillance region. GPS reports from commercial aircraft can also be incorporated if 
required. The new algorithm builds on the earlier work done in SSD by Percival and 
White [17], [18], [19] by providing major extensions which overcome the limitations of 
the earlier algorithm. The DMPTF algorithm treats all the sources of track data in the 
same fashion, leading to a simple and elegant set of association and fusion equations. 
This algorithm can be used to enhance the value of the OTHR surveillance data from the 
Jindalee Facility Alice Springs (JFAS) and the Jindalee Over-the-horizon Radar Network 
(JÖRN) for air picture compilation, to aid the integration of OTHR into a multi-sensor 
air surveillance system, and thereby contribute to the command and control capabilities 
of the Australian Defence Force (ADF). Early trials of the algorithm have been performed 
on a test-bed as well as on an operational radar, giving very promising results. 

The report describes the advances made to the earlier MPTF approach, the key ad- 
vances being: 

• an algorithm which enables temporal as well as spatial track behaviour to be ac- 
counted for during the association and fusion processes, 

• a robust strategy for the pruning of association hypotheses, which enables the effi- 
cient implementation of the algorithm for a much larger number of tracks than was 
previously possible, 

• the development of an algorithm for dealing with changes in the number of tracks 
during consecutive updates (a common phenomenon with multipath tracks), 

• equations for using measurements in place of track estimates in the association and 
fusion processes, the aim of these equations being to enable the reduction of effects 
due to track dependencies, 

• the development of an algorithm that can be used to associate and fuse asynchronous 
non-OTHR tracks (eg., microwave radar or GPS) with the multipath OTHR tracks 
of multiple OTHRs in a single fusion process. 

In the earlier work by Percival and White, the association and fusion equations are 
obtained by analogy to multisensor work described in the literature. In addition to the 
advances summarized in the previous paragraph, a further contribution of this report is 
the first principles derivation of the original MPTF algorithm, which has confirmed errors 
in the equations derived using the analogy approach of the earlier work. Furthermore, the 
first principles approach is subsequently used to provide a rigorous derivation of the new 
dynamic algorithm as well as equations for using measurements in place of track estimates 
in the association and fusion processes. Another contribution of the report is a literature 
survey and discussion of possible approaches for dealing with track dependence. 
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This report is organized as follows: In Section 2, a first principles derivation of the 
earlier "static" MPTF algorithm is given. Section 3 discusses issues regarding the com- 
putational complexity of the MPTF algorithm and gives reasons why hypothesis pruning 
is necessary for the algorithm to be able to be implemented. In section 4, the develop- 
ment of a hypothesis pruning algorithm is described, and subsequently, in section 5, its 
implementation is discussed. Section 6 presents the new dynamic multipath track fusion 
(DMPTF) algorithm, and investigates approaches for dealing with track dependence. Sec- 
tion 7 then goes on to describe the results of initial performance testing and assessment. 
In section 8, a modified version of DMPTF is derived in which measurements are used in 
the association and fusion process in place of track estimates. Section 9 describes how the 
DMPTF algorithm can be used for fusion of tracks from multiple sensors such as multiple 
OTHRs or OTHRs and microwave radars. Finally, in section 10 a summary of the work 
and conclusions are presented as well as an outline of future work that is recommended. 
The reader is also referred to [24] and [25], which present some of the algorithms and 
results described in this report, but in substantially less detail than is given here. 
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2    Static Multipath Track Fusion 

The static MPTF algorithm [17], [18], [19] generates association hypotheses by recur- 
sively constructing a hypothesis tree at each update of the tracks. Each path through the 
tree corresponds to a unique association of radar tracks with targets and available prop- 
agation paths. The algorithm evaluates the probability of each hypothesis and computes 
estimates of the target states within each hypothesis. Key points to note are that the 
tracks must be updated simultaneously and each update is treated independently by the 
MPTF algorithm. A description of the static algorithm is given in references [17], [18] and 
[19]; however, the earlier version was developed by analogy with other work and was not 
rigorously derived. There are also some mathematical errors in the earlier equations. For 
these reasons, and because the static algorithm forms the basis of the initial creation of the 
hypothesis tree in the DMPTF algorithm, it was necessary to derive the static equations 
rigorously from first principles. The derivation is presented in this section. 

V2(0) 
vf2(l) 

Vi(0) 
ViO) 

V!(2) 
V,(3) Vi(4) 

Figure 2: Four multipath tracks in radar coordinates 

Consider a collection of tracks r,, j = 1,..., J in radar coordinates. Figure 2 shows an 
example with four tracks (ie, J = 4), which often occurs with a single target. Let us first 
consider update (time) A; = 0. At time k — 0 the J tracks are represented by the estimates 
V'j(O), j = 1,..., J. Given prior information on the propagation path transformations 
from radar to ground coordinates [17], the corresponding estimates in ground coordinates 
y"1' (0) and their covariances Pmj (0) can be calculated for each possible propagation path 
rrij. Using this information, a hypothesis tree for the J tracks is created recursively, 
starting from the root and building the tree by considering one track estimate at a time 
until all the estimates have been processed. The hypothesis tree is used as a tool to 
visualize all the target and path associations that are possible for the J tracks. Note that 
for the remainder of this section the time index, (0), is not written, for the sake of brevity. 

To begin, let Ani n2---nK denote the composite hypothesis that Tj is associated with 
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target rij, j = 1,2,...,if, K < J, ie, T\ is associated with n\, T2 is associated with 
n2,..., TK is associated with UK- This type of hypothesis will be referred to as a path 
independent hypothesis in the remainder of this report. As an example, figure 3 shows 
a path-independent hypothesis tree for a cluster of three tracks (J = 3). The first track 
is assigned to target t\ yielding hypothesis Ai. The second track can be due to the first 
target, t\, or a second target, £2, giving the set of hypotheses {An, A12}. If the first two 
tracks were due to target ti, the third track could be due to £1 or could be due to a new 
target t2> giving the hypotheses {Am, A112}. If the first two tracks are due to two different 
targets, that is t\ and £2 respectively, then the third track can be due to either t\, £2 or 
a new target £3 giving the hypotheses {A121, A122, A123}. Thus for three tracks there are 
five possible path independent hypotheses {Am, A112, A121, A122, A123}. Note that in the 
general case, assuming that there are no false tracks, the values that nj can take lie in 
the set {l, 2,..., Bni,,nj_y}, where Bni...n,-_i is the number of path independent hypotheses 
that originate from hypothesis Xm...nj-i- F°r example, consider A12 in figure 3, where 
#12 = 3. 

^111 

^112 

A121 

A122 

^123 

Figure 3: Path independent hypothesis tree for three tracks. 

Now let A™1™2;^™* denote the composite hypothesis that TJ is associated with target nj 
and propagation path m,j, j = 1,2,..., K, K < J. This type of hypothesis will be referred 
to as a path dependent hypothesis. The values that can be taken by n; are as before, and ral- 
lies in the set {1,2,..., Mj} where Mj is the number of propagation paths associated with 
ipj. Note that Mj is known a priori, as it is supplied as part of the coordinate registration 
(CR) information. If it is assumed that no two resolved ground tracks that are due to 
the same target can be associated with the same propagation path, then the values that 
rrij can take lie in the set {1,2,..., Mj} n Sj where Sj ={mj : rrij = mj-\ if nj = rij-i, 

mj — rrij-2 if ^j = "j-2,---! mj = mi if nj = "1} and Sj is the complementary set of Sj. 
This assumption is made for the remainder of the report. Clearly, each path-independent 
hypothesis Ani)..inj corresponds to a set of path-dependent hypotheses {\™l\]'.\)?]J}. The 
relationship between path-dependent and path-independent hypotheses can be illustrated 
using the previous example of a cluster of J = 3 radar tracks and letting the number of 
propagation paths be Mj = 2. Consider the sequence of hypotheses, Ai —+ A12 —* Am, in 
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the path independent hypothesis tree of Figure 3. This sequence can be decomposed into 
the path dependent hypotheses shown in Figure 4. 

Figure 4'- Path dependent hypotheses corresponding to path Ai —> A12 —* A121 of the path 
independent hypothesis tree. 

Consider now, in detail, the creation of the hypothesis tree and the calculation of the 
hypothesis probabilities and fused estimates. 

Firstly, let us define the following: 

O™* = the event "track Tj, j — 1,.., J is associated with propagation via propagation 
path m,j, mj G {l,2,..,Mj}". 

<fhj = the event that "track Tj, j = 1,.., J is associated with target nj, nj € {1,2,.., J}". 

From the first estimate, ipi, the propagation path transformations can be used to 
calculate y™1 and its covariance P™1 for each propagation path mi = 1, ..,M\. Under the 
assumption that there are no false tracks, there is only one target association possible for 
ipi, namely target 1. The probability of each of the path dependent hypotheses is then 

P{>?l\il>i}   =   P{0T\4>\\^} mi = l,.,Mi 
=   P{0Tl\4>\^i}P{cl>\\rPi} 

where 

P{<j>\\^} = l 

hence 

p{Ki\^) = p^rkUi} 
=   P{6^1} 

Let ß™3 be the prior probability of 9 • 3; this is estimated using physical measurements of 
the ionosphere. Hence P {of1} = /3™1, and 

P {\?1 Wi} = ß?1        m^l.^Mi (1) 
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For each subsequent estimate, rpj, j = 2,.., J, the recursive equation for calculating 
m\..m.K ~    ~ the probability of A™1^* from A™1.:«™*;1 can be derived as follows. 

Consider the second estimate, V2; using the propagation path transformations we can 
then calculate y™2 and its covariance F2

m2 for ^^ propagation path, ie, m2 = 1,..,M2, 
where M2 is the number possible paths for r2. Define now j\™j = the (single path depen- 
dent) hypothesis that Tj is associated with target n_,■ £ {l,2,.., Bni..„^ } and propagation 

path rrij € {1,2, ..,M,}. 

Consider now hypothesis 2A™2, ie, that track r2 is associated with target n2 and with 
propagation path m2. The probability of the hypothesis is 

Ü2 = l 7712 = 1 

2      M2 

n2 = l 7712 = 1 

Now, in the above P{6™2 14%*,il>i,\?1 } = P {0%2) = $T2> ™2 = 1,..,M2 because 
the conditions give no information regarding the probability of 6™2. With regard to 
P {<j%2 \iplt X™1 } , n2 = 1, 2, there are (at least) two approaches that may be considered: 

Approach 1: Assume that we know nothing about the target density, and simply 
assume that both 4>\ and </% are equally likely, ie, P {<j>\ |V>i, A™1 } = 57 = 5 and 

P y>\ \1p1AT1} = W = 2 ■ This is the aPProach that wil1 be developed here. 

Approach 2: Assume that we know something about the target density a priori and 
use this to determine P{</>2

2 IV^A™1 }. This approach will not be investigated in this 
report. 

Now, in the implementation of MPTF the ground co-ordinate estimates y™J are used 
to perform the probability calculations, hence we need an equation in terms of them. To 
obtain this, wherever we encounter the conditioning event 6™3 we can replace ipj with 

ymj, ie, replace the estimate in radar coordinates with the equivalent estimate in ground 
coordinates given the stated propagation path. Hence we can easily obtain 

P{2A£2 |^i, A-1 } = 

2       Mo 

E  E v{yf2\er-<t>2X2-.yTiK')P{QPW-y?l^T}P{<t>?Ayr,K1} 
ri2 = l rri2 = l 
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Substituting 

P{QT l$2> y?1,*?1} = ß\ 

into the above gives 

P{2\%\MiAT} 

P{4\y?\K1} = 5 

p{yTK2^\yT\Kl)ß22 

El2=l ÜEU P (^2 l^2. <%, »T1. A?1) /3f2 

The probability of the composite hypothesis A^1™2 is hence given by 

p(yn^2»^2.yr^r)^2 

E2 v-\-^2 
n2=l 2^m2=l ■ 

tf 
tTtl\ 

,p{yf2\0T,<t>2\y?l,Kl)ß: 

where it has been assumed that 

p{XT1\^2^i} = P{XT1\^i} 

ie, that the probability of A™1 is independent of -02 prior to any hypothesis being made 
about the target and propagation path associated with fa- 

Consider now the general case of calculating the probability of A™1;;^* from A™^ 
We then have the following 

rn.K-1 
■ TlK-l    • 

mj    €    {l,2,..,Mj}, rij G {1,2,..,Bn^.n^}, j = 1,..,K 

Let us now introduce the following shorthand notation: tyK = ipi,.., ipK , where again the 
time index, (0), is omitted for brevity. Then 

p (K\mK \iifK   xmi..rriK-i i  _ prflmK    ,nK l^iC   .mi..mK-i 1 

P^I**-1,«-;1) 

°n1..nK_1     MR 

£     £ p(^K*,4K.*K-^C.:J^70^{^K,4Kl*K^C.:n™*71} 
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As stated earlier, the relevant estimates for calculating the probabilities are the ground 
co-ordinate estimates y™j. The equation in terms of them is 

p(KxmK \yK  Ami..mK-i 1  = 

I  mi( Inrajr   JUK   „mi        „,mK-i   %mi..mK-i\ 
P\VK    \eK   i<Pk"'Vl    i~iVK-\   'V-n/C-i   ) 
vP/fl^l/K  „mi        „mK-1   \m'"mK"1 1 

w D (J.KK L mi „,mK-i    \ml"raK-l \ 

•B"l-nK-l     MK 

E      E 
njf=l     mK=l 

/-  mK umK    ,nK  „mi        „,mK-i    \»"i"m/f-i\ 
V\VK     \eK   i<PK  'Vl    T-'yK-l   .V..nK-i   j 

XP {OR    \4>K  ,V\    ,~,yK-\   »Ani..nK--i    J 
v, nfÄ   |„mi        „,mK-\    »mi-.m/f-i 1 

Substituting 

D fümK \xnK   .,,ml o,"1«""1    \ml'-m«'-l \      _      ftmK 
P{®K   WK iVi  T-IVK-\ .V-riK-.i ;   -   PAT 

' \*A: [2/I   '••I?/A:-I >
A

»U"«K--I  ; 
1 

£>ni..nK-\ 

into the above gives 

(   m.K \arriK   JKK   „mi        ..mK-i    \ml-mK-i \ am 

E E    V\yK    \eK   i^KiVl    i-'ViC-l   iV-.njf-i   j % 
nK = l     m/<- = l 

The probability of the composite hypothesis P {A™/.;^* I**-} is 

P «.:&* \*K} = P {KKK
K . C-nT-T11*1"} 

Now, applying conditional probability and assuming that1 

p r ,mi..mK.i |vi/A"l  _ pffi-mK-i IlI/^-H 

ie, that the probability of A™1;;™/^1 is independent of tpK prior to any hypothesis being 
made about the target and propagation path associated with ipK, the following is obtained 

p f \m,..mK Ivi/A--!  _ p/K^K |fi..mft-i   ^K 1  p rxmi..mK-i I^AT-1 1 
^\Am..nK-    |V     ;_r\    AnK   lAni-"^-i   'W     ;^\^ni..nK-i    |* J 

ie, 

/   mK \nmK    ,nK   „mi        ,,mK-i    \mi ••mf-i \ omK p / \"U """K-i Irt/A'-l 1 
rr,r..m.,|^l_P(^    F/'V^l    '"'^-1   ,Am..nK-i    )PK   ^(Am..nK-i    F | 
^t"V..nK    1^     J Sn1..nK_1    Mv 

E        Z>   Pll/A'   PA-   '^A- >2/I   '-'J/AT-I  >Am-nK-i  ;PAT 
UK = 1     m/f = l 

'it may be possible to avoid this assumption, which has been found to introduce an ordering property 
on the hypothesis probabilities, that is, the magnitude of the probabilities is affected by the order in which 
the tracks are introduced to the algorithm. A new derivation, which aims to remove the assumption is in 
progress and will be presented in a subsequent publication. 

10 
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If it is assumed that no two resolved ground tracks which are due to the same target can 
be associated with the same propagation path then 

T) (iimK l?/mi       7/mK_1   \™i-™K \ ßmKpI\™l™K-i |M*"-1 \ 
p |Ami..mK \yK 1  = P\VK    \Vl    »"»Py-l   >Äm..nK   ) ^K   r l-*ni~nir-i    |W )        ,^ 

n\..n,K i Bni..nK_l      MK /    . -     \ 

nK=\      mK=l, 

Now, let us consider how the likelihood p (y%K \0^K, <finK
K, y^,.., y^1, A™1.]«™-71) is 

calculated. If UK ¥" nji j ^ 1,.., Ä" — 1 ie, ipK represents a new target, we have no prior 
information regarding what the state of y^K should be. Hence the likelihood, A^K, is 
given by: 

AF ± pCyn^.^.^.-y^.C:^;1) (3) 

va 
where Vs is the "volume" in state space in which the target may be. The above equation 
is equivalent to saying that the target is equally likely to be anywhere in the volume. Note 
that this "volume" represents all the possible values of the state vector [r r a d] where 
r is the range of the target in ground coordinates, and a is the azimuth of the target in 
ground coordinates. 

Now consider the case where njc = rij for one or more of j = 1, ..,K — 1 ie, ipx 
represents the same target as at least one previously hypothesized target. Let us assume 
that the hypothesis A™1.;^^1 is associated with T targets where 1 < T < K— 1 . Assume 
now that the target that TK corresponds to is ti, 1 < i < T and that prior to considering 
y^K, there have been h track estimates associated with the current target for this time 
instant. Let the previous estimate of the state of target tj be xf and its covariance P/1. 
Since it is assumed that y^K (with covariance P^K ) is from target U , the best available 
estimate of y%K , prior to actually determining y*£K from TK and the assumed propagation 
path rriK, is obtained by noting that 

• all process and measurement noises are assumed Gaussian, 

• y^K is computed using a Kaiman filter (which is an unbiased estimator if the process 
and measurement models are correct) and a subsequent ionospheric transformation 
which is assumed unbiased, 

• x\ is computed using an unbiased estimator, 

• viz* anci ^i are b°th estimates of the same target at the same time instant. 

Assuming all the above, the best estimate (ie, the expected value) of y^K is 

^ \VK    VK   IVK >»1    '■•'»K'-l   >^ni..T»K-i    } — xi 

The covariance of (y^K — xf) is 

TmK    A   E 
lK 

mK       ~h 
VK vT ~ «? 

=   E { [($* - Xi) - (4 - Xi)] [(y£* - Xi) - (4 - xi)]'! 

11 
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Let x\ — Xi — X1? and y^K = Xi — y^ , where x, is the true state of target ti, then 

1K 
PIK 

VK 
rriK 

VK 

E {*? (#)' - 2* (ft*)' - vT (^)' + VT (VT)'] 

=   £<x: 

Now, P? 4 £? {** (**)'} ,^4E {$* ($*)'} > ** = E {x? ($*)'} , /£** 4 

JS^ (*?)'}. hence 

T"IK _ ph _ phmfc 
lK xK Ki K 

Then the likelihood 

KK 

where 

=    |27r^*|-*«cp{-i(^),(^)-1^ 

»T = {vT - xf) 

(4) 

(5) 

As mentioned earlier, there are some errors in some of the static equations presented 
in [17] and [19]. The key equations in question are the counterparts of equations 2, 3, and 
5 in this report. For a description of these errors, the reader is referred to Appendix A. 

Consider now the estimate x^+1 of x% and its covariance P^+l obtained by the fusion 
of x-1, h = 1,2,.., H - 1 with y£K . To derive this we shall use the fundamental equations 
of linear estimation as shown on pages 44 and 125 of [4], ie, 

x   4   E {x\z} = x + PxzPzz
l {z - z) 

Pxx{z   4   E{{x-x)(x-x)'\z} = Pxx-PxzP-lPZi 

(6) 

where x is the random vector to be estimated, z is the new measurement or the observation, 
x is the previous estimate of x, z is the previous estimate/prediction of z, x = E[x\z] is 
the conditional mean of x given z, and 

Pxx = E[(x- x) (x - x)'] 

Pxz 4 E[(x-x){z-z)r\ 

Pzx 4 E[(z-z)(x-x)'] 

Pzz = E[{z-z){z-z)'] 

Pxx\z - E [{x - x) {x - x)'\z] 

12 
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Now, following the approach shown in sections 8.3.3 and 8.4.4 of [5], we replace the 
terms in the fundamental equations of linear estimation with their equivalent terms in our 
problem as follows 

x 

x 

z 

z 

x?+1 

vT 

Pzz - E | [y™" - **] [ft* - **]'} = P? - pfi»K - F%«h + P™« 

Expanding the right hand side of the replacement for Pxz gives 

E | [Xi - xf ] [y^K - x?]'}    =   E | [Xi - 4} [vT -*- *? + *<]' 

p/i p' 

Hence the replacement for Pxz is 

xK 

PXz->P?-P$K 

Expanding the right hand side of the replacement for Pzx gives 

y^       Xi    Xj + Xj    Xi 

=   £{(5?-fiSK)(x?)'} 

_     ph      pmi(h 

and hence the replacement for Pzx is 

P  L ph       pm-Kh zx —> r{      rKi 

13 
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The resulting fusion equations are hence 

sf*1 = x 
H + (ph _ pk^ (rm,}-l ^nK _ -ftj (?) 

pk+l = pH_ (ph _ phm^ pgK)-l (pH _ pmK^ (g) 

Note that the cross-covariance matrices P^K* and P^h are extremely difficult, if 
not impossible, to determine. It seems that it may be more appropriate to use the actual 
measurements from which the (radar coordinate) tracks are derived, than attempt to 
rigorously compute the cross-covariances of the track estimates. Using measurements 
would remove some of the contributions to the cross-covariance terms (this will be discussed 
later in the report). As a consequence, the approach that is taken here is to approximate 
the values of the cross-covariance matrices. Later, an algorithm for the creation of the 
hypothesis tree using the measurements will be derived, the aim being to compare the 
comparative performance of the two approaches. 

As described above, the static MPTF algorithm computes the association probabilities 
and performs fusion for every possible combination of target and propagation path associ- 
ation. Unfortunately, for the numbers of tracks and propagation paths found in practice, 
the algorithm cannot be implemented without some form of hypothesis pruning. The same 
applies to the DMPTF algorithm as it uses the "static" MPTF algorithm for its initial 
creation of its hypothesis tree. An efficient algorithm for performing recursive pruning of 
the MPTF hypothesis tree has been developed and is described in section 4, following a 
discussion regarding the computational complexity of MPTF in section 3. 

14 
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3    Computational Complexity of Multipath 
Track Fusion 

In the absence of a hypothesis management strategy, the number of association hy- 
potheses produced by the MPTF algorithm can quickly become too large for real time 
execution. Some preliminary work on overcoming this difficulty was described in Refs. 
[18] and [19], but the approach presented was found to be of very limited usefulness. This 
section presents equations for the number of hypotheses that the MPTF algorithm gener- 
ates and then gives a summary of the pruning work described in [18] and [19], followed by 
reasons for the inadequacy of the approach. 

Consider the path-independent hypothesis tree for a cluster of J tracks. The number 
of track-to-target association hypotheses at a given depth J of the hypothesis tree for 
the path independent case was evaluated in [17] to be the Bell number (or exponential 
number) [6] 

j 

fr(j) = 5^5(j,r) 
r=i 

where S (J, T) is the Stirling number of the second kind and is given by 

S(J,T) = -L£(-l)r-'C?V     1 <T< J 

where 

cT = 
{T-t)\tV 

Now consider the propagation paths that are to be associated with radar tracks. If all 
combinations of ionospheric paths are allowed, it can be easily deduced that the number 
of association hypotheses at a given depth J of the path dependent hypothesis tree, with 
M available ionospheric paths, is 

J 

H{J,M)=MJ^S{J,T). 
T=\ 

As an example of what can be expected in real surveillance scenarios, for a cluster 
of 10 tracks and 9 possible ionospheric paths the number of path-dependent hypotheses 
in the final (i.e., 10th) level of the hypothesis tree is if (10,9) « 4.04 x 1014. The total 
number of hypotheses that would need to be evaluated to build the tree is 

J 

H(J,M) = ^2H(j,M). 
i=i 

For 10 tracks and 9 possible ionospheric paths H(J,M) « 4.13 x 1014. Clearly the 
hypotheses cannot be exhaustively evaluated in real time nor stored in computer memory. 

15 
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An approach to reduce the number of association hypotheses a priori was described in 
Refs. [18] and [19]. In that scheme, the formulation of hypotheses relied on the application 
of physical (deterministic) constraints. 

The assumption that the physical constraints are based on is that two radar tracks 
having different range estimates may arise from the same target only if the track at great- 
est range is associated with the propagation path of greatest path length. This prior 
information can be used for the a priori pruning of hypotheses. 

The physical constraint is applied as follows. Tracks Tj;, j = 1,.., J are ordered with re- 
spect to one of the components of the track state vector ipj, typically the range component 
Rj which gives 

Ri< R2<...<Rj. (9) 

Likewise, the propagation paths rrij , for the jth track j = 1,.., J are ordered with respect 
to resulting ground range r ■J so that 

i 2 Mi 

rj      <rj       <---<rj ■ (10) 

For path-dependent hypotheses of the form A™1^2^™-7 where n* = rij , i < j , the ordering 
of the tracks and propagation paths in conjunction with the above assumption leads to 
the constraint 

rrii < rrij. (11) 

This approach promises the advantage of decreasing the number of hypotheses that must be 
evaluated, hence minimizing computational expenditure. Unfortunately, as demonstrated 
below, at best, this is only a partial solution, as it does not prune enough hypotheses to 
make the MPTF algorithm practical for OTHR applications. 

When the deterministic constraint is applied with J tracks and with M available 
ionospheric propagation paths, the number of path-dependent association hypotheses is 
given by 

j-x 

H(J,M)=        £        C^C^H&M), 
j=max(0,J—M) 

where the recursive expression is initialised with H(0, M) = 1. A table giving values 
of H(J,M) evaluated for 1 < J < 6 and 1 < M < 8 has been presented in Ref. [18]. 
Returning to the earlier example, with the number of tracks J = 10, the number of 
ionospheric propagation paths M = 9, and the constraint applied, the final level of the 
hypothesis tree has ^(10,9) = 4.89 x 1012 hypotheses. The total number of hypotheses is 
H = 5.08 x 1012 , which is approximately 100 times less than the number of hypotheses 
in the absence of any a priori pruning. However, it is clear that the application of the 
deterministic constraint alone does not reduce the number of hypotheses anywhere near 
enough to make the MPTF algorithm practical. Additional hypothesis pruning methods 
are required regardless of whether deterministic constraints are applied. There are also 
other difficulties with using physical constraints which make the approach impractical even 
for preliminary pruning. These are described below. 

16 
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Because the ordering of tracks and propagation paths is performed using estimates of 
random variables, applying the constraint (11) can give rise to errors. Firstly, for two 
associated radar tracks arising from propagation via the "mixed paths" such as EF and 
FE, the track range is nominally identical. Thus the range orderings represented by (9) 
and (10) may result in a correct path-dependent hypothesis not being formulated when 
(11) is applied. A simple method to overcome this difficulty may be formulated whereby a 
parameter SR which is a function of the track range variance is used to apply the constraint 
(11) when 

Ri + 6Ri < Rj - SRj       i<j. (12) 

However, this reduces the already limited amount of pruning that is achieved. 

Secondly, the software implementation of the physical constraint is found to be com- 
plicated when the coordinate registration advice is considered, eg., 

• The CR system may advise a different set of propagation paths for different tracks in 
which case the ordering of paths according to a given track may not be appropriate 
to the paths advised for another track. Note that in (9) the propagation paths are 
ordered according to the transformations for the jth track only. 

• When the number of tracks and propagation paths and their order changes with time, 
the changing order must be somehow accommodated in formulating the updated 
hypotheses. 

This introduces unwarranted complexities in computation and management of data as well 
as coding complexities. It is important to note that the original aim of a priori hypothesis 
pruning is to reduce computation and data management when formulating and evaluating 
hypotheses. 

Finally, from a mathematical standpoint the physical constraint approach is essentially 
a deterministic tack-on to a stochastic algorithm (MPTF). This may have been justifiable 
had it achieved substantial computational efficiencies; however, this was found to not be 
the case. 

For these reasons it was decided to abandon the physical constraint approach sum- 
marized above in favour of the recursive a posteriori pruning algorithm described in the 
following sections. Note that a simpler constraint, m* ^ m,j if nj = rij, i ^ j has been 
retained where appropriate. In words, the constraint states that two tracks due to the 
same target cannot be propagating via the same propagation path. This constraint does 
not suffer from the disadvantages of (11). 

17 
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4    Recursive Hypothesis Pruning 

In order to make MPTF computationally feasible, a new pruning algorithm has been 
developed which exploits the recursive nature of the MPTF algorithm by pruning unlikely 
hypotheses at each level of the hypothesis tree as it is built, prior to creation of the next 
level. The decision as to which hypotheses to prune is made on the basis of hypothesis 
probabilities which are calculated using all components of the track estimate state vectors 
and path transformations. If H is the number of hypotheses formulated by the MPTF 
algorithm at a particular level of the hypothesis tree, then the pruning scheme retains the 
K best (highest probability) hypotheses. These hypotheses are subsequently used in the 
MPTF algorithm to form the next level of the hypothesis tree. The remaining H — K 
hypotheses are pruned and therefore are not used in forming hypotheses in higher levels 
of the tree. The integration of the pruning scheme with the MPTF algorithm is outlined 
in the following pseudo-code, with the last two steps being the additional steps required 
to perform hypothesis pruning. 

- Using the first track estimate, formulate all path-dependent hypotheses and calculate 
their probabilities; 
- While unprocessed track estimates remain: 

- Select the next track estimate; 
- Formulate new path-dependent hypotheses using the current track estimate and the 
path-dependent hypotheses remaining in the previous level of the hypothesis tree; 
- Calculate probabilities of all new path-dependent hypotheses; 
- Determine and mark the K most probable hypotheses; 
- Remove all unmarked hypotheses from the current level of the hypothesis tree; 

The major advantages of the new approach are: 

1. It enables a huge reduction in the number of hypotheses that are evaluated, and easy 
tailoring to the computational capabilities of the computer on which the algorithm 
is to be implemented by adjusting the value of K. 

2. The approach is consistent with the probabilistic model being used to model the 
system, using all the components of the state vector and path transformations, and 
their covariances. 

The approach has a potential disadvantage, i.e., finding the K best out of an initial 
H hypotheses is computationally expensive when both K and H are large if a simple 
sequential search algorithm is used. In order to overcome this potential limitation, several 
algorithms for finding the K best hypotheses were investigated with the aim of producing 
a computationally efficient pruning algorithm. The following two subsections give an 
outline of the algorithms that were investigated and the results of comparative testing, 
respectively. 

4.1    X-best Search Algorithms 

Prior to describing the algorithms that were investigated, it is appropriate to make a 
distinction between hypothesis management in multiple-hypothesis tracking (MHT) [23] 
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and that required in MPTF. Techniques such as Lagrangian Relaxation [20], which have 
been applied for finding the best set of association hypotheses in MHT, are not applicable 
for MPTF. This is because MPTF is not cast in the form of an assignment problem, as 
is the case for MHT. In the assignment problem there is competition for "resources"; for 
example, in MHT, tracks compete for measurements. In the case of MPTF, there is no 
such competition. As a result, an alternative algorithm, to essentially solve a different 
problem, needed to be found. The development of this algorithm is outlined below. 

Data structures and algorithms from the computer science literature were investigated 
to yield schemes that would efficiently find the K hypotheses with highest probability 
from a set of H initial hypotheses (ie, perform a K-best Search). Several of the most 
promising techniques were examined in detail and compared, with the aim of producing a 
computationally efficient pruning scheme to be implemented within the MPTF algorithm. 
The algorithms and data structures that were investigated and tested in detail were FIND 
[9], AVL Trees [1], [2], Skip Lists [21] and Binary Heaps [26], [10]. FIND is generally used 
in sorting, whereas AVL Trees and Skip Lists are generally used for searching algorithms, 
and the Binary Heap for constructing Priority Queues [26], [10]. In addition to the above 
techniques, the performance of a repeated Sequential Search was measured. This was used 
as a reference against which the more sophisticated approaches could be compared. 

The algorithms that were examined in detail are outlined in the following paragraphs. 
In the algorithm descriptions, conventional computer science terminology is employed 
when appropriate. Specifically, a record is defined as an object which stores information. 
A key is a component of a record which can be used to reference the record. In a structure 
that has many records, their keys can be used to find individual records (ie search) or to 
order the records (ie sort). In the MPTF pruning algorithm the records correspond to the 
hypotheses and the keys are their probabilities. 

Sequential Search The simplest algorithm for finding the best K of H records is 
to perform a Sequential Search K times. At each pass, the best record is found and then 
tagged so that it is not considered in subsequent searches. The algorithm is simple but 
inefficient when H and K are large, having a computational complexity of O(KH). A 
summary of the algorithm follows: 

Starting with a list of H records, repeat the following K times: 
- Scan through the list of records to find the record with greatest key; 
- Record and tag that record so it is not scanned in subsequent passes; 

FIND Sorting techniques based upon Hoare's FIND algorithm [9] are widely used, 
for example in finding the median of a set of numbers. Consider an array A(1),A(2), 
... ,A(K), ... ,A(H) containing the keys of H records. FIND partitions the data such 
that A(l)... A{K - 1) > A(K) and A{K + 1)... A{H) < A(K), but does not require 
either partition to be fully ordered. 

AVL Tree There are many binary tree algorithms which seek to ensure that an 
efficient search tree is always maintained by balancing the tree [26]. An example of a 
balanced-tree algorithm is the AVL tree developed by Adelson-Velskii and Landis [1], [2]. 
The AVL tree is a binary tree which has the property that the sub-trees of every node 
differ in height by at most one. A balance factor is added to each node in the tree and 
rotations of nodes within the tree, based on the balancing factor, are performed to retain a 
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balanced tree. While balanced-tree algorithms ensure good performance, they are complex 
to code and the overheads in maintaining a balanced tree are significant. 

Skip List A Skip List is an ordered list data structure with additional forward pointers 
to skip multiple records in the list, thereby reducing the time taken to traverse the list [21]. 
Each record is represented by a node in the skip list. A node has level i if it has i forward 
pointers. A random number generator is used to specify the level of each node according 
to the skip list parameter p, which is the probability that a node has a level i pointer 
given that it has a level i - 1 pointer. The parameter p is chosen to maximise algorithm 
performance, often set to 1/4 or 1/2. The average performance of the Skip List is in the 
order of KlnH, but its performance reduces to that of the repeated Sequential Search 
in the worst case. The poor worst case performance is considered a serious limitation for 
real-time applications. 

Binary Heap A Binary Heap [26] is a special type of binary tree, represented as an 
array, which maintains the first element in the array as the record with the minimum (or 
maximum) key. The structure is arranged such that the children of node j in the array 
are in position 2j and 2j + 1, and the parent of the jth node is in position j div 2. The 
elements in the structure satisfy the Heap property ie, the children of node j have larger 
(or smaller) keys than the record at node j. The Binary Heap is often used as a Priority 
Queue algorithm [10], [26] because it allows very simple and efficient implementation of 
the Priority Queue insertion, deletion and replacement operations. 

In this work, three Priority Queue operations, insert, delete and replace, are supported 
by the Binary Heap in order to implement the K-best Search algorithm. The insert 
operation places a new record into the Heap after the previous last record, and then 
reorders the records so that they again satisfy the Heap property. The delete operation 
removes the top-most (i.e. the minimum key and first index in the array) record from the 
heap, and then reorders the remaining records as necessary. The replace operation replaces 
the top-most record in the heap with the new record and then reorders the remaining 
records. A detailed description of the three operations is given in Ref. [26]. 

The repeated Sequential Search and FIND were implemented by entering all H records 
into a one-dimensional array and then determining the highest K records (ie, the K 
records with the highest keys). With AVL Trees, Skip Lists and Binary Heaps there were 
two options available, owing to the data structures being used. Because the three data 
structures incorporate an ordering mechanism by virtue of their construction, the act of 
inserting a record into each structure ensures that records within the structure are ordered 
by their keys. AVL Trees and Skip Lists are fully ordered structures whereas Binary Heaps 
are only partially ordered. Most importantly, the minimum record in the structure can 
easily be accessed and replaced. Hence, for these three cases, two types of K-best Search 
algorithm were implemented. The first type sequentially inserts all H records into the 
structure (as was done for Sequential Search and FIND), then extracts the highest K 
records from the structure one-by-one. The second approach stores only K records in 
the structure at any one time, by monitoring the minimum record in the structure and 
only inserting those records that have a key which exceeds that minimum. The second 
algorithm is summarised by the following pseudo-code: 
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For the first K records in the list of H records: 
- Add the records into the data structure. 

For all subsequent records: 
If the key of the selected record exceeds that of the minimum record already in the 
structure, then 

- Remove the minimum key record from the structure. 
- Add the new record into the structure. 

A key point to note about the second approach is that it reduces the number of 
insertions into the structure as well as minimizing memory requirements. 

4.2    Performance Comparison 

The average performance of Sequential Search, FIND, AVL Tree, Skip List and Binary 
Heap schemes, when used as Ä"-best Search algorithms, was compared by implementation 
(in C++) and testing on a 233 MHz Pentium PC, running Windows NT 4.0. Input data 
was simulated by generating 1000 sets of H random numbers, with the aim of determining 
the K highest numbers in each set. The measure of performance was the average run time 
for executing the algorithms, which was determined as a function of K and H. 

Figure 5 presents the average times taken to find the K highest values from a set of H 
numbers. Each set of numbers was randomly generated and uniformly distributed in the 
interval (0—1). The three algorithms based on ordered data structures, (i) Binary Heap, 
(ii) AVL tree and (Hi) Skip List, were each implemented with structure sizes of both H 
and K records. In the figure, as well as the following text, the structure size is written in 
parentheses following the structure name. 

Figure 5(a) and (c) show that the performances of the AVL Tree (H) and Skip List (H) 
algorithms are similar to that of Sequential search when K is small but are substantially 
better for K = 500. The fastest algorithms for most values of K and H are FIND, Binary 
Heap (K), AVL Tree (K), and Skip List (K). Consistently high performance is attained 
by the FIND and Binary Heap (K) algorithms, especially for K = 500, making them the 
best candidates for use in the hypothesis pruning algorithm. Of the two, Binary Heap 
(K) is considered a better choice because it requires an array of size K, in contrast to 
the FIND algorithm which requires an array of size H. It should also be noted that the 
Binary Heap (K) algorithm is simple to code, which is an important consideration in the 
implementation of the multipath track fusion algorithm. 

For the reasons given above, the Binary Heap (K) algorithm was selected for the 
implementation of hypothesis pruning in MPTF. 
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▼ Skip List (H) A Skip List (K) 

Figure 5: Comparison of average run-time of candidate K-best Search schemes as a func- 
tion of the initial number of records, H, for the cases when K — 50, K — 100 and 
K — 500. Plots (a), (c), and (e) show the same data as (b), (d) and (f), respectively, but 
with different scales on the vertical axes. 
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5    Hypothesis Pruning Algorithm 
Implementation 

As stated in the previous section the pruning algorithm that was found to be most 
efficient was the one based on a Binary Heap structure. This algorithm was coded on the 
MPTF testbed and its implementation was found to extend the capability of MPTF to 
much larger numbers of tracks and propagation paths than previously possible, making 
it feasible to use MPTF without further extensions when there is a moderate number 
of tracks and propagation paths, ie, more than 20 tracks with 10 propagation paths with 
computational power presently available to the MPTF algorithm in the JFAS radar. While 
the OTHR can be expected to have considerably more than 20 tracks over its entire 
coverage area, only tracks which are relatively close to one another can conceivably be due 
to the same target, the multiple tracks (from a single target) forming clusters of almost 
invariably less than 9 tracks and usually 4 tracks or less. This characteristic was used to 
enable MPTF to deal with very large numbers of tracks (eg., hundreds of tracks with ten 
propagation paths). This was achieved by the development of a clustering algorithm which 
groups tracks which can conceivably be due to the same target and then passes on these 
groups of tracks to the MPTF algorithm for processing. The purpose of the clustering 
algorithm is not to decide which tracks are due to the same target, but instead, to form 
groups of tracks which may be due to the same target, while maintaining group size to less 
than about say 20 tracks, and at the same time not placing tracks from the same target 
into separate clusters. The combination of pruning and clustering was implemented on 
the testbed and also a prototype version was incorporated in the actual Jindalee OTHR. 
The combination worked very well, handling tracks in the entire coverage area of the radar 
effectively and without creating unacceptable delays in computation. No further details 
of the clustering algorithm will be given here as it will be the subject of a future report. 

As mentioned in an earlier section, the pruning technique that has been developed 
exploits the recursive nature of the MPTF algorithm by pruning low probability hypotheses 
at each recursion, thus avoiding the exponential growth in the number of hypotheses. 
A possible disadvantage of this approach is that hypotheses that are unlikely in early 
recursions may, under some circumstances, subsequently lead to the creation of likely 
hypotheses, had pruning not been performed. Preliminary investigations have indicated 
that this is not likely to be a problem and that the MPTF algorithm will perform very 
effectively with quite heavy pruning implemented in the manner described. While no 
detailed studies have yet been performed to determine the best choice for the number of 
hypotheses that should be retained, in the investigations to date, retention of the best 100 
hypotheses in each algorithm recursion has proven quite successful. 

Finally, it should be noted that the hypothesis pruning algorithm that has been de- 
veloped here for OTHR multipath track fusion may also be applied to multisensor track 
fusion algorithms that have been cast in the multihypothesis framework. 
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6    Dynamic Multipath Track Fusion Algorithm 

In earlier work, as described in [17] and [19], the procedure for update k = 0 is 
simply repeated for all subsequent updates (k = 1,2,3,...), with each update being treated 
independently. The major disadvantages of this approach are 

• only synchronous estimates can be included in the hypothesis tree, hence multisensor 
tracks cannot be accommodated, 

• of more fundamental theoretical importance, temporal behaviour of tracks is com- 
pletely ignored, 

• when multipath tracks drop out or come into existence there is no theoretically 
justifiable way to "link" hypotheses from consecutive updates. 

In [19], possible extensions to include target dynamics are outlined. It is suggested that 
the tracker's target dynamic model be used to perform predictions (in radar coordinates), 
which would then be transformed to ground coordinates. The extensions only involve 
synchronous updating of the tracks that are used as inputs to the MPTF algorithm. 
Of considerably more importance, there is no description of how hypothesis probability 
updating can be performed, other than the presentation of two very general equations that 
have been transcribed from [14]. These equations offer little insight into how hypothesis 
probability updating would actually be performed. Initiation and termination of tracks is 
also discussed but no solution presented. 

An algorithm which overcomes all of the above-mentioned limitations is derived and 
presented in detail in the following subsections. 

6.1    Incorporation of Target Dynamics 

The dynamic multipath track fusion (DMPTF) algorithm which will now be derived 
overcomes the major limitations of the static MPTF algorithm by using an approach in 
which target behaviour is modelled. This enables hypothesis probability calculation and 
fusion of estimates that are temporally separated, enabling asynchronicity to be accom- 
modated and temporal behaviour to be taken into account. In the DMPTF algorithm, 
the hypothesis tree constructed at k = 0 is as described earlier in section 2. However, 
instead of creating a new tree at each update, as is done in the static MPTF algorithm, 
hypothesis probabilities and fused estimates of the initial tree are updated as new data 
become available at updates k > 0. 

The following assumptions are made when developing the algorithm: 

1. If track Tj is due to target t{ with propagation via path rrij at update k = 0, then it 
remains so for all future updates. This is clearly true if the tracking algorithm has 
performed its function correctly. 

2. The number of tracks is constant for all updates. This is only a temporary assump- 
tion that is utilized in the initial development of the DMPTF algorithm and is later 
removed by the development of an adjunct algorithm which will be described later. 
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As a result, no new hypotheses are generated after the initial creation of the tree at k = 0. 
For updates k > 0, only the hypothesis probabilities and their associated fused estimates 
change. 

Now let us consider updates k = 1,2,3,... . The hypothesis tree built up at k = 0 can 
be used as the basis for the tree at subsequent updates as described below. 

In order to shorten notation, let us define the symbol W (k) such that W (k) = 
ipi (k) ,..,ipj (k). In the creation of the hypothesis tree (at update k = 0) we derived 
the probability P {X0*;™J \VJ (0) } of each path dependent hypothesis A^1;^-7, mj € 
{1,2, ..,Mj}, rij € {l,2, ..,.Bni..rv,_i} given all the data available at update k = 0, ie 
the estimates xpi (0),.., ipj (0), as described in section 2. Now let us define the following 
shorthand notation: 

Dk 4 Vi(o),..>^(o),Vi(i),..,0j(i),....,^i(*;-i),..,^(fc-i),V'i(fc),..,^(fc) 
=   ¥J(0),tfJ(l) ,..,*'(*) 

ie., Dk represents all the (radar coordinate) track data available up to and including 
update k . Hence 

P {K!:Z
J
 \Dk}±P {XZT/ l*J (o) - *' (i). - *' (k)} 

Consider the updating of the probability of hypothesis AJ^1;^-7 when the first track 
estimate for update k , (ie, ipi (k)) is considered. Using Bayes rule we have 

 P (ft (*) \W:£J,Dk-1) P fey \Dk~l}  
Bnl-"J-1 1        Mj Mi 

E   •• E  E •• E p(fc(*)|Aft:»7.öfc-l)pW?iV.£J l^*"1} 
nj=l        fti=lräj=l    mi=l 

Now, as noted earlier, in the implementation of MPTF the ground co-ordinate esti- 
mates yj 3 (k) are used to perform the probability calculations, hence we need an equation 
in terms of them. Hence again, wherever we encounter the conditioning event 0™3 we 
replace ipj (k) with y^ 3 (k). Now, when we have the event \™i'.™3.'^J we note that this 
includes the event 6* 3 (as well as a number of other conditions). Hence the above equation 
can be replaced by 

 P (y?1 (*0 re;ffJ. a*"1) P {Kl:ZJ \Dk~'}  
Mi 

•  E p(yTHk)\XZt/,D^)P{X%\t/\D^} 
mi=l 

To calculate p (y™1 (fc) | A™1 ;^J, -Dfe_1), we need information regarding the dynamics of 
the target that y™1 (k) is associated with, or predictions to be provided by the individual 
trackers producing the tracks TJ . The approach that will be taken will be the former, ie, 
using a model of target dynamics. The reasons for choosing this approach are 
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• Less information needs to be provided to the fusion algorithm by the trackers, re- 
ducing communication bandwidth. 

• Using target dynamics gives a more general solution, for example if measurements 
are fused instead of track estimates as will be described later in the document, the 
approach can still be applied. 

Now let us assume that target U satisfies the following state equation: 

xi{k) = F(k-\)xi{k-l) + v{k-l) fc = 1,2,3,.... (13) 

where F (k - 1) is the state transition matrix of each of the targets for the time interval 
between update A;-1 and update k, and v(k-l), k = 1,2,... is the sequence of zero-mean 
white Gaussian process noise with covariance E [v (k — 1) v {k - 1) ] = Qk-i ■ Hence, 
given the fused estimate xf (k - 1) for the hypothesis being considered, where H is the 
number of track estimates that were combined at time k - 1 to obtain xf (k - 1), we have 
the following prediction at time k based on target dynamics 

*?(*)    =   F(k-l)x?(k-l) (14) 

Pt°(k)   =   Fik-yPfih-VFik-iy + Qk-i 

Using the above we can easily obtain the likelihood 

An*) = P^WIC:»"'.^"1) 
=   tf(i^(*);x<0(fc)f7r(*)) 

=    I27T7T1 (k)H exp i-\ {yT1 (k) - x° (*))' If1 (k)'1 (y^ (k) - *° (*)) 

where 

and 

If1 (jfe) = P? (k) - P°mi (k) - P™10 (k) + P™1 (k) 

P?(k)   4   £{x?(fc)*?(fc)'} 

pr(k) 4 E{^(k)^(k)'} 
P?r(k)   4   E{x?(k)y?l{k)'} 

In the above 

x?(k)     =    Xi(k)-X^{k) 

y^(k)    =   Xi{k)-yTl(k) 

Consider now, the updating of the probability of the hypothesis Xni.'-'n/.nj J when the 
jth track estimate for update k, (ie, ipj (k) ,  1 < j < J ) is considered. Using Bayes rule 
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we have 

JB{C.:£J|*i(*).J>*~1} 
p {ipj (fe) IW.T/'V'1 (fc). Dk~l)p feffJ I*'"1 (*) ■ Dk~l} 

'    _       P (0J (*) reff', gJ'-1 (fc), l?*"1) P {Äff.;™-* l^-1 (fc), Dk~l } 
Bni..nj_, i        Mj M\ 

E    •• E   E •• E 
nj=l        m=lmj=l    mi=l  . 

Now, as earlier, wherever we encounter the conditioning event 6j 3 we can replace ipj (k) 
with j/j } (k). Again, when we have the event Xn^'n^nj J we note that this includes the 
event 9j ' , hence the above equation can be replaced by 

f \mi. mj 
■nj ¥(k),Dk~1} = 

p {yjj (fc) I Kl:ZJ, v~l (fc), D"'
1
) P {Kl:ZJ l^"1 (fc) > -P""1} 

^l-nj-l 1        Mj MI 

E    •• E   E •• E 
nj=l        fii=lmj=l    mi=l 

p(yri(*)W.:5J.*i-1(*),^-1)x 

Then we can easily obtain the likelihood 

Aj*(fc)   A   p(y7'(fc)re:^l^-1(fc)>D
fc-1) 

=   M(y^(k);x?(k),Tp(k)) 

=   hirifik) exp {-i (#' (*) - *? (fc))'^ (A;)"1 (y™> (fc) - S? (*)) } 

where 

and 

jhrrij rtijh Tp (k) = Ff (k) - Pp (k) - P™in (k) + Pp (k) 

pre *(*) 4 E{3t{k)3#{k)'} 

Pp(k) 4 E{y^(k)y^(k)'} 

P^{k) 4 EfämFik)'} 

P^h{k) 4 E{y^(k)xHk)'} 

y^(k)   =   Xi(k)-y^(k) 

and X} (k) is the most recent fused estimate/prediction for target U for the hypothesis 
being considered. 

In the above 
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Hence combining the cases of j = 1, 1 < j < J and again assuming that no two 
resolved ground tracks which are due to the same target can be associated with the same 
propagation path gives the following probability update for the hypothesis An^ln^n?"7 

using the jth track estimate of update k, rpj (k): 

I \m\..mj ¥{k),Dk~l\ = 

1        s"i-"j-i    Mi Mj 

E ••     E      E ••   E   A?J(k)P{)$?;£'\9*-i{k),Dk-i} 
n\=l nj = l     mi=l       mj = \ 

mj£Sj 

where, for j = 1: 

Kf{k)   =   A*'(fc)ip(y*'(fc)|Aj'.:if,D*-1) 

and for 1 < j < J: 

A?'(*)  ^ p(yr(*)W:^J,^-1(fc)>JDfc-1) 
A^(fc)   ±   p{y^{k)\^;tJ\^-i{k),Dk-') 

The likelihood for both cases is then 

(15) 

A™j (k) = 2nT™j (k) exp ]^(fc)'^(fc)-l^(fc) 
where 

^jw = (#'(*)-*?<*)) 
,/irrij r^(fc) = ^(^-^(Äj-p^w + if^A) jWijh 

and 

(16) 

(17) 

/*(*)    =   f;{x?(fc)x?(fc)'} 

fgm'(*)    =   £?{x?(fc)y^(fc)'} 

Pj^W    =   £{#'(*)*?(*)'} 
x?(k)    =   Xi (A) - xh

x (k) 

yf{k)    =    Xi(k)-y^(k) 

In the above, xf (fc) is the most recent fused estimate/prediction for the target ^ that 
y- J (fc) is assumed to be associated with for the hypothesis being considered. Note that 
x° (k) , k > 0 are predictions based on fused data available up to time k - 1, whereas 

28 



DSTO-RR-0223 

%i (ty , M 0) are fused estimates. The predictions xf (k) are used when no fused estimates 
are available for target U at time k. 

Consider now the estimate xf+1 (k) of Xj (k) and its covariance P^+l (k) obtained by 
the fusion of xf (k), h = 0,1,.., H - 1 with y™> (k). This is again derived using the 
fundamental equations of linear estimation and essentially the same reasoning as shown 
earlier for k — 0 . 

The resulting fusion equations are hence 

xf+1 (*) = xf (k) + (P? (k) - Fjp (fc)) Tp (k)-1 (y? (k) - ** (k)) (18) 

P »+1 (fc) = ^* {k) _ (ph {k) _ phm: (fc)) ^ (fc)_x ^ (fc) _ ^ (fc)J (w) 

Some comments are warranted regarding a further point of divergence from the work 
described in [17], [18] and [19]. In those papers, a description is given of the application 
of Gaussian mixture equations [4] for describing the probability density function of fused 
tracks. The idea is, given a set of path dependent hypotheses which only differ in their path 
assignments (ie, they all correspond to the same path independent hypothesis), one can 
construct a fused estimate for the corresponding path independent hypothesis which is a 
Gaussian mixture of the estimates for the path dependent hypotheses. This idea developed 
largely from a limitation of the static algorithm. Because the hypothesis probabilities 
in the static algorithm are based on a single update of the tracks, there is usually not 
enough information available to achieve a single dominant path dependent hypothesis. 
Usually, however, if one groups the path dependent hypotheses into their corresponding 
path independent hypotheses, the result is a smaller number of hypotheses with significant 
probabilities. This results in greater ease of presentation and interpretation of data. This 
approach does have a down side, however. Knowing the correct path to be associated 
with a particular track in radar coordinates is critical to accurately mapping it to ground 
coordinates, and hence obtaining the best fused estimate. The Gaussian mixture approach 
as applied to this problem does not achieve this. Instead it simply gives a "best" estimate 
in a statistical sense based on the relative probabilities of the propagation paths. In a 
sense, this estimate is always wrong, in that it does not correspond to any particular 
path transformation. Furthermore the relative probabilities of grouped path dependent 
hypotheses in the static algorithm generally vary significantly from one update to the next. 
This leads to undesirable "jitter" in the fused tracks corresponding to the path independent 
hypotheses. With the introduction of the dynamic algorithm this conundrum is largely 
resolved. Because the DMPTF algorithm determines its hypothesis probabilities over 
time, much more data is available for determining relative hypothesis probabilities. The 
outcome is that after the initiation of a hypothesis tree, a small number (often one) of path 
dependent hypotheses quickly become dominant. The result is that there is no need for 
calculating Gaussian mixtures of the path dependent hypothesis estimates to determine 
equivalent path independent estimates. As a result the aforementioned approach was 
discarded. 
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6.2    Dealing with Changes in the Number of Tracks 

A common phenomenon that occurs is the dropping out and initiation of multipath 
tracks as ionospheric conditions change with time. Without being able to deal with this 
phenomenon, the DMPTF algorithm would have little application. This section deals 
with additions to the DMPTF algorithm which enable it to cope with both increases and 
decreases in number of ground tracks with time. 

First let us consider what happens when the number of tracks increases from update 
k to k + 1. The approach to take in this situation is to predict the hypothesis estimates 
from update k to update k + 1 exactly as for the case when the number of tracks does 
not change, using equations 15, 16, 18, 19, and then to extend the tree using the newly 
started tracks Tj(k)+j , j = 1,.., [J(k + 1) - J (k)} . The tree is extended in the same way 
as was done during the initial creation of the original tree, using equations 2, 3, 5, 7, and 

8. 

Now consider what happens when the number of tracks decreases from update k to 
k + 1. Let us start with a simple example to help us visualize what needs to be done 
when the number of tracks decreases. Consider the case of 3 tracks, 2 paths per track 
(only OTHR tracks) at time k . Now look at the sample space ft, of all possible outcomes 
(where each path dependent hypothesis is a single outcome) as shown below. Note that 
path dependent hypotheses that have two tracks with the same propagation path for the 
same target are included (they are not in the actual implementation). 

ft = {Am, An2, A121, A122, A123} 

where 

\      _ run  \ 121  \2ii  \22i  \ Am — \Am>Aiii) Ani) Ani)A 

x        _ J\lll   \ 121   \211   \221   \ A112 — tA112>A112>A112> A112> A 

x / \111   \121    \211   \221    \ 
A121 — \A121> A121> A121) A121> A 

x        _ / x 111   \121   \211   \221    x 
A122 — \A122> A122) A122> A122> A 

x        _ / \ 111   \121    \211   \221   \ 
"M23 — \A123' A123> A123> A123> A 

12   \122   \212   \222\ 
U)Alll!Alll) Ain; 
12   \122   \212   \2221 
12> A112J 

A
112> 

A112J 
12   \122   \212   \222\ 
21) A121i A121> A121/ 
12   \122   \212   \222l 
22) A122> A122> A122J 
12   \122   \212   \222\ 
23) A123) A123> A123J 

Now, the above is only one possible grouping of path dependent hypotheses. Let us 
now group all the path dependent hypotheses that have identical first and last target 
numbers, ie, ignoring the target number of the second track. This is performed to see 
what needs to be done if, say, track 2 no longer exists at time k + 1. Note that we will 
treat target number 3 as being the same as target number 2 for the purpose of grouping. 
The reason that this can be done is that during hypothesis tree generation the target 
numbers are incremented simply to signify that a different target is introduced. Once the 
target number of the second track becomes irrelevant, as is the case here, the third track 
can only be due to the same target or a different target to the first, and thus can simply 
be given a label of 1 or 2, the former label applying when it is the same target and the 
latter when it is not. We then obtain the following 

ft = \Ai*i, A1,(2i3)} 
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The two outcomes listed on the right hand side of the above equations can be decomposed 
into the following 

where 

and 

where 

\        _f\l*l   \2*1   \1*2   \2*2\ 
-n*i — \Ai*i> Ai*i> Ai*i>Ai*ij 

\1*1_/\111   \121   \111   \121\ 
Al*l — \A111> A111>A121>A121J 
\2*1_/\211   »221   \211   \221\ 
Al*l — tAlll>Alll>A121>A121J 
\1*2_/\U2   \122   \112   \122\ 
Al*l — \A111>A111>A121>A121J 
\2*2_f\212   \222   \212   »2221 
Al*l — lAlll) A111>A121)A121J 

\ _ /\1*1 \2*1 \1*2 \2*2      \ 
Al*(2,3) - \A1*(2,3)'A1*(2,3)'A1*(2,3)'A1*(2,3)/ 

\1*1       _f\lll   \121   \111   \121   \111   \1211 
Al*(2,3) — \AH2)A112'A122)A122)A123)A123/ 
\2*1       _f\211   \221   \211   \221   \211   \2211 
Al*(2,3) ~ \A112>A112'A122>A122>A123>A123J 
\1*2       _ /\112   >122   \112   \122   \112   \1221 
Al*(2,3) ~~ \A112) A112)A122> A122i A123) A123J 
\2*2       _/\212   \222   \212   \222   \212   \2221 
Al*(2,3) — \A112> A112>A122> A122» A123) A123J 

Prom the above, it is clear that 

p{Au1} = p{Ai:i}+p{A?:i}+p{Ai:?}+p{A?:?} 

where 

and 

P (Al*(2,3)} - P (Al*(2,3) } + P \A1*(2,3)} + P \Alt(2,3) } + P \A1*?2,3) } 

re 

P {A}:^)} = P {>&} + P {AiS} + P {\\\\} + P {AgJ} + P {Alia} + P {Ali} 
3 {A?:;2,3)}=p {xi\i}+p {Af?u+p {xiii}+p {xiii}+p {xf2\}+p{> 

Di\]** A = pi\\m + Pt\\n\ -4- pt\ii2\ + p(\m\ + pt\\%\ + po 

where 

*{      .-  
P {A?:;2,3)} = P {XfA} + P {XfA} + P {A?22} + P {A?i} + P {A&} + P {A?i} 

P {Ai:?2,3)} = P {Aul} + P {Ajg} + P {\\%} + P {AÜ} + P {\\lj} + P {Au} 

P {A?:?2,3)j = P {Afll} + P {A??!} + P {A?g} + P {A?|} + P {A?g} + P {Afl} 
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If we now rename the hypotheses as follows 

\m\*m,3     \m1m3 
Am*ri3 ni min(n3) 

we have the leaves of the hypothesis tree for two tracks and their corresponding probabili- 
ties. This regrouping can be done at update k once it is known that track 2 will terminate 
at update k + 1 . 

Now consider the target state estimates by looking at some examples. Consider the 
new hypothesis A}} = A}*} 

\11 A \1*1 _ / \111   \121   \111   \121\ An — Ai*i — \Aiii> Am> Ai2i> Ai2i; 

In the above grouped hypothesis, A*}} and X\f\ have one target estimate xi (k) associated 
with them, whereas A^} and Aj^i have 2 associated target estimates x\ (k), X2{k). The 
new grouped hypothesis should only have target estimates that involve tracks 1 and 3, since 
target estimates that only involve track 2 must be terminated when track 2 terminates. 
Now, in all of Aj^.Ajf}, \\l\, X\l\, estimate x\ (fc) involves tracks 1 and 3 (and also track 
2 for X\\\, X\l\) hence x\ (k) is retained. Estimate x2 (k) in A}^}, X\j\ only involves track 
2 and hence is removed. Now we are left with four estimates xi (k), one for each of the 
path dependent hypotheses. They are highly correlated, with the extent of the correlation 
again being extremely difficult to ascertain. It is proposed that the best approach here is to 
compute the equivalent Gaussian to this Gaussian mixture to form the new xi (k). Their 
high correlation is expected to generally result in their means being fairly close in value 
and hence the approximation in forming the equivalent Gaussian should be reasonably 

good. 

Now consider the new hypothesis A^ = X\*J2 3^ 

\ 11 A \ 1*1        _  f \111   \121   xlll   \121   %111   \1211 
A12 — Al*(2,3) — \A112> A112i A122) A122> A123> A123/ 

In the above grouped hypothesis 

• There are no hypotheses that have only one target estimate associated with them. 

• Hypotheses A}^» Ali2 Ai22' Ai22 have two target estimates X\ (k), $2 {k) associated 
with them. Neither of the estimates only involve track 2 in any of the hypotheses, 
hence both estimates are retained. 

• Hypotheses A}^ and A}^ have 3 associated target estimates x\(k), X2(fc), xz(k). 
Estimate X2 {k) only involves track 2 and hence must be removed. 

Now we are left with six estimates x\ (fc); one for each of the path dependent hypothe- 
ses. We then compute the equivalent Gaussian to this Gaussian mixture to form the new 
x\ (k). We are also left with four estimates X2 {k), one for each of A}}^ , M12 ' Ai22 > Ai22 i 
and two estimates X3 (k), one for each of A}^ and A}^ • Now estimates S3 (k) for each of 
AJ23 and A^23 are associated with track 3, and estimates X2 (k) for each of A}}^ > ^112 1 Ai22 > 
A^22 are also (at least in part) associated with track 3. We hence compute the equivalent 
Gaussian to this Gaussian mixture (of 6 Gaussians) to form the new X2 {k). 
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We can now generalize from the above specific case to propose a simple general algo- 
rithm for performing the regrouping for any number of tracks and propagation paths as 
follows. Starting with a set of path dependent hypotheses A™1;;™^™-7^) where track TK 

terminates, perform the following steps: 

1. Rename each of A™^*;^ (*0 by removing subscript nK and superscript mK- 
Delete all target estimates that only involve a contribution from TK- Rename tracks 
TK+1,-,TJ tOTK,..,Tj-i. 

2. For each of the newly named Xni'.n1/^1 (k) (where subscript n# and superscript 
rriK are now removed, and tracks TK+I,..,TJ are renamed TK,-,TJ-I), rename the 
hypothesis using the most compact notation that allows description of tracks intro- 
ducing new targets or tracks being associated with previously hypothesised targets. 
Reordering of subscript numbers must be performed for some hypotheses so that 
the first new target identifier is 1, the second is 2, etc. Rename the target estimates 
associated with each hypothesis as the corresponding hypothesis is renamed. 

3. Group all hypotheses that now have identical labels (subscripts and superscripts) to 
form new merged hypotheses. The probabilities of the new hypotheses are set to the 
sum of the probabilities of the hypotheses from which they are formed. 

4. For each new merged hypothesis, form the equivalent Gaussian from the (unnor- 
malised) Gaussian mixture that corresponds to the hypotheses from which the merged 
hypothesis is formed. 

If the number of tracks decreases by more than one, the above grouping is repeated 
for each track that has terminated. The hypothesis tree is then ready for the prediction 
step from update k to k + 1 which is performed as described previously. 

The equations for the replacement of the unnormalised Gaussian mixture associated 
with a group of hypotheses by a single Gaussian probability density function are given 
by the following. Consider N estimates, Xj, with covariances Pj and probabilities pj, j = 
1,.., N, where the hypotheses that the estimates are associated with are mutually exclusive 
but not exhaustive, that is p = Y^jLiPj ¥" 1- The mean that is used for approximating 
the Gaussian distribution is: 

* = ö2^W (2°) 

and its associated covariance is: 

p=l[jb>ipi+n (2D 
where 

N 

-Pj p-J2 (xi ~ x) (XJ - x)' 
J=l 
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Note that the factor \jp which appears in front of the sum for both the estimate and 
covariance fusion normalises the hypothesis probabilities with respect to the probability 
of the merged hypotheses. Equations 20 and 21 are referenced from [4] page 47, where 
there is some explanation of their derivation as well. Note that they have been modified 
to account for the fact that the hypotheses are not exhaustive. 

To demonstrate how the above algorithm works in a slightly more complicated case, 
consider the application of the algorithm to two specific example hypotheses from a hy- 
pothesis tree for six radar-coordinate tracks. Consider the hypotheses A123123 and AJ23143 
with probabilities pa, and pt respectively. The former has three target estimates, x\,X2,X3 
associated with it, whereas the latter hypothesis has four, ie £1,2:2, £3, £4 . Let track 2 
terminate. After step 1 the new hypothesis names are AJ3123 and AJ3143 respectively. For 
the former all three target estimates x\,X2,X3 remain, whereas for the later the estimate 
X2 is removed leaving xi, £3, £4. After step 2 the two hypotheses have identical hypothesis 
names and estimate labels, ie AJI132 and 21, £2, £3 respectively. Hence the two hypotheses 
are then merged to form the new hypothesis \\2il2 w^n probability p = pa+ Pb ■ The 
formation of the three Gaussian mixtures and their equivalent Gaussians is performed by 
a straight forward application of equations 20 and 21. 

6.3    Track Dependence 

The likelihood and fused estimate equations in both the static and dynamic cases 
incorporate cross-covariance terms so that, in theory, dependence between estimates ipj{k) 
can be accommodated. The main causes of dependence between tracks are 

• common process noise [5], 

• tracks being updated using common measurements [19], [7], [13], and 

• common propagation path segments [19]. 

In practice, however, it was found that the cross-covariance terms are extremely dif- 
ficult to determine because of the complexity of the interactions involved. Research was 
undertaken to determine the cross-covariance terms, or at least to approximate them, with 
at this stage little success. 

The approaches for dealing with dependence between tracks that were looked at were 

1. Assume independence, ie, set cross-covariances to zero. 

2. Directly calculate cross covariances. 

3. Simple approximations to cross-covariances, based on judgement. 

4. The covariance intersection algorithm [27]. 

5. Rearrangement of equations to reconstruct measurements. 

6. Using the measurements from which the original unfused tracks have been formed. 
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A summary of the approaches and the results obtained upon testing is given in the following 
paragraphs. 

The first approach, which is also the easiest, is to simply ignore the interdependencies 
between the multipath tracks, ie, to set the cross-covariance terms in the likelihood cal- 
culations and fusion equations to zero. This was tested and used as a reference against 
which the performance of the other approaches was compared. Somewhat surprisingly, 
while obviously not optimal, the approach was found to provide reasonable fusion and 
likelihood calculations, with the major negative effect being that the covariances of the 
fused estimates shrink somewhat too quickly over time. This was found to result in a 
particular favoured hypothesis having its probability approach 1 more rapidly than would 
be expected. It also led to the resulting estimates being very "smooth", when compared 
with the original tracks, again more so than an optimal algorithm would be expected to 
produce. 

The second approach as suggested in [19], and described in [5] is extremely unwieldy 
when applied to DMPTF, because of the number of tracks that need to be fused and the 
asynchronicity that must be accommodated. This technique also puts restrictions on the 
models used by the trackers that feed information to the DMPTF algorithm. Additionally, 
the approach would, if in fact it could be implemented, at best, only solve the process noise 
aspect of the dependence. For these reasons, this technique was not considered further. 

The third approach is to provide a simple approximation for the cross-covariance ma- 
trices, as suggested in [19], and [5]. Considerable experimentation was performed with 
this technique, but it was found that this approach simply did not work for DMPTF. A 
geometric combination [5] p455 of the covariances of the two dependent estimates as well 
as several other types of approximation of the cross-covariance terms were tried, none of 
which came even close to giving satisfactory performance. The resulting covariance sums 
(shown in equations 4 and 17) would sooner or later result in a non-singular covariance 
matrix, leading the DMPTF software execution to terminate. The only way that this 
could be avoided was by setting the cross-covariance terms to values very close to zero, 
effectively approximating the first approach listed above. The suspected reason is that the 
dependence between new data and previously fused data varied substantially with time 
and between hypotheses, making it impossible for a simple cross-covariance approximation 
to be used successfully. 

The fourth option considered is the covariance intersection (CI) algorithm [27] (also 
referred to as Gaussian Intersection). The aim of this approach is to avoid the need to 
calculate or estimate dependence between data which is to be fused, while still arriving 
at a result that is optimal in some sense. A short summary of the algorithm and some 
experimental findings will be given here; full details of the technique can be found in [27]. 

Consider two estimates, xa and xi, with means a and b and covariances Paa and P&& 
respectively. The covariance intersection algorithm forms the fused estimate c with co- 
variance Pcc by using the following equations 

PO" = «p^+a-wjp^1 (22) 
P~lc   =   uP^a + {l-u)Pnlb       where wG [0,1] 

The free parameter u> can be used to optimize the fused estimate with respect to different 
performance criteria such as minimizing the trace or the determinant of Pcc. The result, 
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3- 

Figure 6: Example of fusion using the Covariance Intersection Technique 

it is argued, is a conservative and non-divergent update of the fused estimate. Figure 
6 shows a simple example of the fused estimate produced by the covariance intersection 
technique. Three-sigma ellipses for two coincident estimates are shown (labelled Pa and 
Pi,), as well as two ellipses representing the fused estimate. The Ellipse labelled "Indep." 
represents the fused estimate obtained by assuming that the estimates xa and X(, are 
independent. The ellipse labelled "CI" represents the fused estimate obtained using the 
covariance intersection technique with determinant minimization. 

The CI technique looked quite promising initially; however, in testing done to date its 
performance has been disappointing. Updating of estimates with to set to minimize the 
trace as well as the determinant of the fused estimate's covariance (within the constraints 
of equations 22) was implemented in the DMPTF algorithm, and tested. The outcome was 
that when determinant minimisation was used, the CI algorithm would usually either select 
one or other of the two estimates (ie, u> « 0, or ui ~ 1) as its fused estimate, and tended to 
jump between the two in subsequent updates. Using trace minimization provided a more 
stable result, but once again the algorithm would choose one of the associated estimates as 
the fused estimate, rather than providing a "weighted average" of the two. While testing 
performed to date has shown poor results, leading to the technique being put aside, further 
investigation to analyse the reasons for the unsatisfactory performance may be worthwhile, 
and possibly lead to improvements in performance. 
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The fifth option considered was to perform measurement reconstruction [15], [16], by 
manipulation of the Kaiman filter equations which are used to perform tracking. This 
approach offers the opportunity to account for the effects of common process noise with- 
out calculating the cross-covariances. It would not account for the effects of tracks being 
updated with common measurements or the common propagation path-segment effects. 
For our application, it was found to offer no advantages over simply using the measure- 
ments themselves, since using the measurements would be no more difficult than accessing 
the information required for measurement reconstruction. Measurement reconstruction 
also has the disadvantage of not being able to account for common measurements as can 
obviously be done if the actual measurements are used in the fusion process, and is more 
difficult to generalize to a multi-sensor application where each sensor could potentially use 
a different Kaiman filter (or some other filter for that matter). As a result this approach 
was not investigated further. 

The sixth approach that was considered was to associate and fuse the measurements 
from which the radar coordinate tracks were formed. It should be emphasised here that 
only the measurements which have already been selected by the tracking algorithm/s are 
considered, thus avoiding the computational load associated with the centralized tracking 
approach. Doing this immediately avoids the dependence due to common process noise, 
and offers the potential to remove the effects of common measurements by simply inspect- 
ing the measurements prior to fusion. This approach still does not address the common 
propagation path segment contribution to track dependence, notwithstanding that this 
contribution may be less difficult to deal with once the other effects are removed. The 
approach has considerable merit; hence the association and fusion equations required to 
use measurements have been derived and are presented later in this report. The approach 
has not as yet been implemented for testing however. 

To date, the first option, ie, assume that the data is independent, is what is imple- 
mented in the DMPTF algorithm. 
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7    Performance Testing of DMPTF Algorithm 

The DMPTF algorithm has been implemented in C++ and integrated into a devel- 
opment test-bed in order to determine its performance and assess further development 
requirements. 

For the initial testing of the DMPTF algorithm, pruning was set to retain the 100 
highest probability hypotheses, and the cross-covariance terms of equations 4 and 17 were 
set to zero. Stored examples of real data from the Jindalee OTHR at Alice Springs, 
Australia were used as inputs to the algorithm and performance ascertained. Two types 
of ionospheric coordinate registration (CR) data were used for the path transformations. 
Actual CR data based on ionospheric sounder measurements was used, as well as data 
based on a simplified two-layer ionospheric model. The reason for using the simplified 
model in some of the testing was to enable control over more parameters. 

During the early testing it became evident that performance could be improved by 
making some minor modifications to the DMPTF algorithm. It should be noted that the 
changes to the algorithm were essentially of an empirical nature, giving improved perfor- 
mance for the application in question, but not adding to the theory. The first modification 
was made because in some cases, if a hypothesis which was originally of highest probability 
became inappropriate several updates later, the algorithm would sometimes not readjust 
sufficiently quickly. The cause of this was that the probabilities of non-favoured hypothe- 
ses would become extremely small after several updates, thus making it difficult for them 
to quickly become the highest probability hypothesis when conditions changed. The rem- 
edy for this was to set a minimum value of the probability for each hypothesis. At every 
update the hypothesis probabilities would be calculated using the equations outlined in 
the earlier sections, then for all hypotheses (among the top 100) that had a probability 
below the set threshold, their probabilities would be set to the value of the threshold, after 
which the probabilities of all the hypotheses would be re-normalized. The effect of this 
change was to allow the algorithm to adapt more quickly to changing input data. Some 
"tuning" of this modification is required to obtain best performance. 

The second modification made was to change the way that hypothesis probability up- 
dating was performed for hypotheses containing targets with a single contributing track 
(single-track-per-target hypotheses). This modification was required for reasons that were 
essentially an outcome of limitations in the quality of the ionospheric and track data, as 
well as limitations in the modeling of the system. The major effect that caused problems 
was that for the single-track-per-target hypotheses, where the only difference is the prop- 
agation path assignment, after several updates one hypothesis would become much more 
probable than all of the others. If the data and models were a perfect representation of 
reality, this would not be a problem. However, because this is not the case, essentially se- 
lecting one of the contending hypotheses has often not been appropriate. The adjustment 
made was to use a modified likelihood update equation in place of equation 16. The re- 
placement equation at this stage is equation 3 and is essentially an ad hoc modification. In 
practice this change makes the single-track-per-target hypotheses "fall-back" hypotheses, 
whose relative probability with respect to one another does not change with time (but may 
change with respect to other hypotheses), and whose probability will only become close to 
1 if all other hypotheses are a poor match to the data. A more appropriate modification to 
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equation 16 may be found with further study, although the present modification appears 
adequate from a performance point of view. 

As an indication of algorithm performance, Figures 7 and 8 show a typical multipath 
track scenario and the results of fusion using DMPTF over a total of 50 updates. Figure 7 
shows track data received from the OTHR in radar coordinates (slant range and azimuth). 
Figure 8 shows the fused output of DMPTF in ground coordinates (range and azimuth) 
using the simplified two-layer ionospheric model, resulting in four possible propagation 
paths for each track. In the ionospheric model, the height of the E layer was set to 100 
km with a standard deviation of 10 km and the F layer height was set to 300 km with a 
standard deviation of 20 km. The underlying truth of this example is represented by Figure 
9, which shows track data received from a microwave radar for two targets travelling from 
the bottom right to the top left of the figure. Before continuing, let us also define the two 
letter notation used in the following text to denote the highest probability propagation 
path assignment made by the DMPTF algorithm. The first letter denotes the ionospheric 
path taken by the transmitted signal (ie, from the radar to the target) and the second 
letter denotes the return path (ie, from the target to the radar). For example an EF 
propagation path assignment represents transmission via the ionospheric E layer and a 
return signal propagating via the F layer. 

The input data to the DMPTF algorithm (Figure 7) consists of seven tracks in total. 
Tracks 1, 2 and 3 are due to target 1 in Figure 9 and tracks 4, 5, 6 and 7 due to target 2. 
Note that the seven tracks do not all exist for the entire duration of the example. Tracks 
1, 2, 4 and 5 exist for the entire duration while track 3 exists at the beginning but drops 
out towards the end. Track 7 starts a little way into the example, and track 6 starts a 
little later still; both tracks then run to the end of the duration of the example. 

Figure 8 displays the fused target estimates of the highest probability path-dependent 
hypothesis at each update; hence the figure does not show the same hypothesis for all 
updates. The first feature that should be apparent about the result is that there are four 
distinct tracks shown in the figure, describing the two targets that actually exist. The 
example illustrates, as will be explained below, that with typical real data the algorithm 
may not always deliver a perfect result, but the results that DMPTF does give are generally 
consistent with the sometimes limited and ambiguous data that is available. The example 
was, in fact, chosen because it highlighted some of the ambiguities that occur in common 
scenarios, which can sometimes lead to more than one "correct" track to target assignment. 
Note also that the azimuth scale has been greatly expanded relative to the range scale to 
highlight differences between target positions when path assignments change. The scales 
have not been marked on the axes, however, to maintain an "unclassified" classification 
for this document. 

Target 1 in Figure 8 is the result of fusing tracks 1, 2 and 3 from Figure 7, the 
propagation path assignments being FF, EF, and EE respectively. This target is consistent 
with the underlying truth for the example, ie, it matches up with target 1 of Figure 9. This 
consistency is maintained throughout the duration of the example, despite the switching of 
hypotheses associated with changes in propagation path assignments for tracks associated 
with target 2, as well as changes in the total number of tracks in the hypothesis tree. 

Target 2 in Figure 8 starts in the bottom right-hand corner of the figure at the same 
time as target 1. Tracks 4 and 5, which are the only tracks that exist at this stage that are 
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Figure 7: OTHR tracks in radar coordinates 
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Figure 8: Fused OTHR tracks in ground coordinates 
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Figure 9: Microwave radar tracks 
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actually due to target 2, are fused together at the outset. The propagation assignments 
for tracks 4 and 5 are initially FE and EE, respectively. As becomes evident later in the 
example, these initial propagation path assignments are incorrect. The reason for this is 
that there are only two tracks available for association and fusion, resulting in ambiguity 
regarding which pair of propagation path assignments is appropriate for the target. This 
ambiguity is not due to the DMPTF algorithm itself, but results from the geometry of the 
propagation paths. For example, the relative positions of two tracks which are due to a 
single target, but propagating via the EE path and FE path respectively are very similar 
to those of two tracks propagating via EF and FF respectively. At the points labelled A 
and B a third track is initiated, track 7, which is originally determined to be a third target, 
(and assigned the EE path), but should be associated with tracks 4 and 5, ie, target 2. 
This incorrect target assignment is due to the fact that the path assignments for target 
2 are initially incorrect. Due to the incorrect path assignments, the third track cannot 
initially be associated with target 2 in the highest probability hypothesis, so it as assigned 
to a third target. However, within two updates, the hypothesis that fuses tracks 4, 5 and 
7, with path assignments of FF, EF and EE respectively, becomes the highest probability 
hypothesis, bringing the separate targets at A and B to C. The path assignments for both 
targets 1 and 2 are then correct. When track 6 is initiated at a later time, it is seamlessly 
fused into target 2 with path assignment FE, and when track 3 terminates, leaving target 
1 with two tracks contributing to it and target 2 with four tracks contributing to it, the 
target estimates continue smoothly. 

The example gives an indication of the difficulties associated with the environment in 
which the DMPTF algorithm must operate. The ambiguity between path assignments can 
sometimes result in an incorrect, but plausible, set of paths being assigned to a track. The 
effect of implementing the lower limit of probability for each hypothesis is also evident 
in this example, in that an originally incorrect assignment is rapidly resolved when more 
information, in the form of a third track, becomes available. Where the assignments are 
correct, the example shows that the DMPTF algorithm produces smooth, fused estimates 
of the targets in their correct spatial positions, despite losing and gaining track information 
as the example evolves over time. 

In addition to implementation in the development test-bed, the DMPTF algorithm has 
been integrated into the JFAS radar developmental code for more thorough testing. To 
this end the radar's graphics displays were also modified to enable display of fused tracks 
that are produced by the DMPTF algorithm. Recently an extended trial of the algorithm 
has been performed on the JFAS radar, and a large amount of data collected for statistical 
analysis. While the statistical analysis has not been completed yet, early indications are 
that the algorithm performs well when good coordinate registration (CR) data is available. 
When the CR data is poor, as might be expected, incorrect associations can occur. Based 
on the testing to date, indications are that, at the present level of development of the 
DMPTF algorithm and the CR system, the DMPTF algorithm is capable of being used 
in a semi-automated fashion to give advice to an operator, but operator overseeing is still 
required. However, higher levels of automation can be expected with further development. 
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8    Track Association and Fusion using 
Measurements 

There are important advantages in associating and fusing the measurements from which 
the tracker forms its tracks instead of fusing the tracker's estimates, ie, to use the tracker 
as a "selector" of measurements for the DMPTF algorithm. This approach provides key 
advantages of using measurements while still relieving DMPTF of the computational com- 
plexity associated with using all available measurements in the association and fusion 
process (including the responsibility of track initiation) as was done in [22]. The ad- 
vantages come about from the reduced dependence of data that is used by the DMPTF 
algorithm when measurements are used. As was mentioned earlier in the report, track 
dependence occurs as a result of the following: 

1. common process noise, 

2. tracks being updated using common measurements, and 

3. common propagation path segments. 

Of the three causes of dependence above, the first does not occur at all when mea- 
surements are used in place of track estimates. The second source of dependence can 
reasonably readily be removed by checking for common measurements during the fusion 
process and discarding multiple occurences of measurements prior to fusion. The third 
source of dependence still remains, and must be dealt with by other means. Hence, by fus- 
ing the measurements from which the tracker forms its tracks, two of the three sources of 
data dependence can be removed with no significant increase in computational complexity. 

Let us now derive the association and fusion equations for the case where measurements 
are used. Note that it is quite similar to the derivation for the case where estimates are 
used which was given in earlier sections; the differences come in the details of the equations. 

Consider the creation of the hypothesis tree and calculation of the hypothesis proba- 
bilities and fused estimates. As indicated above, the measurements that are used are those 
that the tracking algorithm uses to produce the estimates ipj (0), ipj (1) , V'j (2) , ••• For the 
purpose of the subsequent discussion, it will be assumed the tracking algorithm is a nearest- 
neighbour (NN) tracker [3]. The approach described below can easily be generalized for 
use with a PDA tracker. Now let us denote the measurements as 6j (0) ,6j (1) ,6j (2) ,.. 
Note that because of the assumption of a NN tracker there is only one measurement per 
update, ie, for each estimate in slant coordinates there is only one associated measurement. 
Note firstly the difference between the track estimate vector and the measurement vector. 
The track estimate vector in slant coordinates is 

Hj 
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The measurement vector in slant coordinates is: 

6j(k) 
Rj 
R-i 

Consider first the creation of the hypothesis tree at time k = 0. The derivations will 
follow a very similar line to that for the case where track estimates are used. Note also 
that, as was done in section 2 the time index (0) will be omitted for time k = 0. Prom the 
first measurement, Si, the propagation path transformations can be used to calculate the 
corresponding measurement in ground coordinates z™1 and its covariance R™1 for each 
propagation path mi = I,..,Mi. Under the assumption that there are no false tracks, 
there is only one target association possible, namely target 1. The probability of each of 
the path dependent hypotheses is then: 

P{\^\Si} = ß^ (23) 

Apj^j and 6j3 denotes the event that track Tj is propagating via propa- where ß™3 

gation path rrij. As for the case of using track estimates, the ß™3 are prior probabilities 
which are estimated using physical measurements of the ionosphere. 

For each subsequent measurement, 5j, j — 2,.., J, the following recursive equation for 
calculating the probability of A™1.;™* from X™1;™^1 can be derived in a similar fashion 
to that used when track estimates were considered: 

p f \mi..TnK 
l/Vii..njc 

xmK omK p f \"ii..mX-i i » K-l \ 
\AK\ =   K   K     iA"i--"K-i  1^      ; 

Bn1..nK_1       MK 

E      E  ^TßT 
nK=l      _mK=l, 

rriK^SK 

(24) 

where 

A™K 
K       —    P \ZK 

xn.K I jm\ 
1    '••'%-! 

rnK-i   imi,.mif\ 

A£* = p{4K ym\ mK-i   x 
i--izK-\   >A 

vni..nK 

'ni..nK-i"K 

andA^^^,..,^ 

If UK ¥" nj for all j — 1, ••> K - 1, that is SK represents a new target, there is no prior 
information regarding the state of z^K. Hence the likelihood, A^K, is given by 

(25) 

where Vm is in this case the "volume" in measurement space in which the target may be. 

If nK = nj for one or more of j = 1,.., K - 1, then SK represents the same target as 
at least one previously hypothesized target. In this case the new information contained 
in Sj must be fused with the previous estimates. Assume that the hypothesis \n?"n£-~S 
is associated with T targets, 1 < T < K - 1, that the target corresponding to the track 
TK is U, 1 < i < T, and that prior to considering z^K there have been h track estimates 
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associated with target t{ for the current time instant. Let the previous estimate of the state 
of target t\ be x\ and its covariance Pf1. Since it is assumed that z^K (with covariance 
R%K) is from target tj the best prediction (the expected value) of z™.K is 

pjÄLmi ™-K-\    \m\..mK\_-h 
& \ZK     \Zl    '"'ZA'-1    'Ani..nK    } ~ zi 

where 

Hxi 

The covariance of (z^K — z^) is: 

Q771/<-       _A_ 
ZK zi 

=   £ { [(*£* - #*<) - H [4 - Xi)] [{z™K - Hxi) - H (*f - a*)]'} 

Let £ j1 = £j — x-1 and 5^K = Hxi - z^K , where X{ is the true state of target U , then 

S%K    =   E Hx?-ZT Hi h _ ~mK ZK 

=   E \HX* (ä?) V - Hx^ (%«)' ~ *K
K
 (*?)'#' + ~ZT (C)' 

=   E lux? (*?)'#'} - E {Hx? (*£«)'} - E hr (X?)'H'\ + E {%« (*£*)'} 

Now 

and let 

Then 

Pt   ±   £?{ä*(s?)' 

R™«    4   E {%"{%")'} 

S™* = HPt
hH' - HU$K - U%l<hH' + R^K 

The likelihood of z^K (assuming a Gaussian distribution) is then given by 

A™K = |27rS£Kpexp -\{-T)'{STV-T 

(26) 

(27) 

where 

,,"iK A ( ?mK       yh\ VK     — \ZK     ~~ zi J 
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Consider now the estimate x^1 of Xj and its covariance P^1 obtained by the fusion 
of $i,h = 1,2,..,if — 1 with z^K . To derive this we shall again use the fundamental 
equations of linear estimation as shown on pages 44 and 125 of [4] and reproduced in 
equations 6 in section 2. Hence, replacing the terms in the fundamental equations of 
linear estimation with their equivalent terms in this problem, and following the procedure 
used in section 2 to derive equations 7 and 8, results in the following fusion equations: 

zf+1 = 4 + (P?H' - U$«) (S^xy1 (*™* - z?) (28) 

ph+l = ph_ ^phH> _ vhrnK j ^mK y\ (^ph _ ym^ (2Q) 

Now let us consider updates k = 1,2,3,... . As before, the hypothesis tree built up at 
k — 0 can be used as the basis for the tree at subsequent updates. The derivations again 
follow a similar line to those for the case of using track estimates. In order to shorten 
notation the symbol AJ (k) is defined such that A3 (k) = 5i (k),.., Sj (k). 

In the creation of the hypothesis tree (at update k = 0) we derived the probability 
p {K?:™/ lAJ (°) } of each Path dependent hypothesis Xft;™/, rrij € {1,2,.., M,} , nj € 
{l,2, ..,Bni..nj_i} given all the data available at update k = 0, ie the measurements 
5\ (0), ..,6j (0) . Now let us define the following shorthand notation 

Dk   =   <5i (0),..,6j (0) ,<Si (1) ,..,5j (1),...., Ö! (k - l),..,6j (k -l),5i (k),..,5j (k) 
=   AJ(0),AJ(l),..,AJ(k) 

ie, Dk represents all the track data, in radar coordinates, (measurements in this case) 
available up to and including update k . Hence 

P {Kf:ZJ \Dk}±p {XZT/1 AJ
 (o), A7

 (i),.., AJ
 (k)} 

Consider the updating of the probability of the hypothesis A™1;;^-7 when the first 
measurement for update k, (ie, S\ (k)) is considered. Using Bayes rule we have 

P|Ani..nj    *!(*),£>      | _____  

 p {Si (k) K.T/'D"'1) P feffJ I-**-1}  
B«i--"j-i 1       Mj Mi 

E   •• E  E •• E p{5i{k)\^:i/,D^)p{\tif/\D^} 
nj=l        ni=lmj=l    mi=l 

Now, as noted earlier, in the implementation of MPTF the ground co-ordinate mea- 
surements Zj 3 (k) are used to perform the probability calculations. Again, wherever we 
encounter the conditioning event &™3 we replace 5j (k) with z™j (k). Now, when we have 
the event Xni.'.'n/.nj J we note that this includes the event O™3. Hence the above equation 3 
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can be replaced by 

P{xZT/\Sr(k),Dk-'} 

p{*?1(k)\W.-%J,Dk-1)P{>Z1
1:£J \Dk-'} 

Bn i--nj-i 1       Mj Mi 

E    •• E   E ■■ E p(z?Hk)\\ZtJ,D^)P{\ZtJ\Dk-i} 
nj = l        tii=lmj=l    mi=l 

To calculate p (2™1 (/c) |A^1
1;r^

J,Dfc"1) we can again use information regarding the 
dynamics of the target that z™1 (k) is associated with. Now, as in section 6.1, let us 
assume that the motion of target U satisfies equation 13. Hence, given the fused estimate 
xf (k - 1) for the hypothesis being considered, where H is the number of track estimates 
that were combined at time k - 1 to obtain xf1 (k - 1), we have (as in equations 14) 

x°i (k) = F {k - 1) x? {k - 1) 

^°(fc) = F(fc-l)^(A:-l)F(A-l), + Qfc_1 

Using the above we can easily obtain the likelihood 

=   M(zZ(k);zf(k),SZ(k)) 

=    I27TSP (fc)r*exp |-| (zZ (k) - z\ (k))'SZ (k)"1 (zZ (k) - z» (k)) 

where 

S™1 (k) = H (k) P? (k) H (k)' - H (k) C/^11 (k) - Up0 (k) H (k)' + RZ (k) 

with 

P?(k)   4   E{xUk)x°(kY} 

RZ(k)   =   E {z™1 (k) z?1 (k)'} 

U^(k)   4   E{xHk)~zZ(k)'} 

UZ°(k)   4   E{zZ(k)xHk)'} 

and 

x°(k)    =   Xi(k)x?(k) 

z^(k)   =   Hxi(k)-z^(k) 

Consider now, the updating of the probability of the hypothesis \™i.'.™?.'n?J when the 
jth measurement for update k, (ie, Sj (k), 1 < j < J ) is considered. Using Bayes rule we 
have 

■{c ■mj 
nj A* (k), Dk~l } 

p (Sj (k) \W;ZJ, A^-
1
 (fc), P*-

1
) P fe^ 1AJ-1 (k), Z)^1 } 

p(Sj(k)\AJ-1(k),Dk-1) 

V (<*j (fc) |A^.;„7, A^-1 (k) ,Dk-i) P {\™\:ZJ W~l (k),Dk-1} 

piSjWl^f/^-iik),!*-1)* '"l-nj-l 1 Mj MI 

E    •• E   E •• E 
nj = l ni=lmj=l     mi=l PjA^.^lA^1^),^-1} 

48 



DSTO-RR-0223 

Now, as earlier, wherever we encounter the conditioning event 0™3 we can replace 5j (k) 
with Zj 3 (k). Again, when we have the event \ni'.n}}.'n?J we note that this includes the 
event 0j 3 , hence the above equation can be replaced by 

p{C:^|A^(fc)ljDfc-1} = 

p{z^(k)\\^;^/,A^(k), Dk-') P {A™ |A^-1 (k),Dk^ } 

Bn1..nj_1 1 Mj Ml 

E   •• E   E •• E 
7ij=l ni=lmj=l    mi=l PJA^.^IA^W,^-1} 

Then we can easily obtain the likelihood 

Aj*(fc)   4   p(z^(k)\XZ-ZJ^J~l^),Dk-") 

=    |2TT^ (fc)I"* exp {-i (*7' (fc) - # (k))'S%> (k)'1 (z? (k) - tf (fc)) } 

where 

S™j (k) = H (k) P? (k) H (k)' - H (k) Ufp (k) - U™3'h (k) H (k)f + R™j (k) 
with 

Pt{k) 4 £{2*(fc)xf(fc)'} 

R™i(k) A E[z™3(k)z™3{k)') 

U?p(k) 4 E{xHk)z™3{k)'} 

U^h(k) 4 E{^{k)xHk)'} 
x?(k)   =   Xi(k)-x?(k) 

(k) Hxi (k) - z™3' (k) 

and x\ (k) is the most recent fused estimate/prediction for target U for the hypothesis 
being considered. 

Hence combining the cases of j = 1, 1 < j < J and again assuming that no two 
resolved ground tracks which are due to the same target can be associated with the same 
propagation path gives the following probability update for the hypothesis Xn^n/.^3 

using the jth measurement of update A;, 5j (k): 

p I ym..mj 
ni..nj A^(k),Dk'1^ 

 ^j{k)P{xz\:ZJ\^j-l{k),Dk-1}  
1        B"i-"j-i   Mi Mj 

E ••   E     E ••  E ^{k)p{xtit/\^i{k),D^} 
(30) 

ni=l nj=l     mi=l      mj=l 

where, for j = 1: 

Af3(k)   =   K1{k)^p{z^{k)\\tl;tJ\D
k-') 

49 



DSTO-RR-0223 

and for 1 < j < J: 

Af (k)   4   p^(k)\XZTJ
J^i-1(k),Dk-1 

The likelihood for both cases is then 

A™'' (k) = 2irS™j (k) exp -\v™Hk)'S™> (k)-lv™i(k) 

where 

and 

(31) 

v?(k)±(zy(k)-zt(kj) 

Pt(k) 4 E{x!(k)xHk)'} 

R^(k) 4 E{z^(k)z^(k)'} 

U*p(k) 4 E{xi(k)%>(k)'} 

U^h(k) 4 £^(fc)i?(fc)'} 

xf(fc)    =   x^)-^) 
5^'(fc)    =   HXi{k)-z™j{k) 

and x^1 (fc) is the most recent fused estimate/prediction for target U that z ■ 3 (k) is assumed 
to be associated with for the hypothesis being considered. 

Consider now the estimate xf+1 (k) of Xj (/c) and its covariance P/1"1"1 (/c) obtained by 
the fusion of x^(k),h = 0,1,.., H — 1 with z™1 (k). This is again derived using the 
fundamental equations of linear estimation and essentially the same reasoning as shown 
earlier for k = 0. The resulting fusion equations are 

xf+1 (k) = x\ (k) + (p? (*) H (k)' - U^ (k)) S%> (k)~l (z™> (k) - % (k))        (32) 

P?*1 (k) = P%
h (k) - (p? (k) H (k)' - U\p (k)) S?> (k)-1 (H (k) P? (k) - U%>h (k)) 

(33) 
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9    Fusion of Microwave Radar and Multiple 
OTHR tracks 

During the development of the DMPTF algorithm, it was always kept in mind that 
the algorithm, if possible, should be extendable to multi-sensor applications thus giving a 
single coherent algorithm for fusing multipath OTHR tracks and tracks from other sources 
such as microwave radar and GPS. This aim was in fact achieved, so that microwave radar 
tracks (or GPS tracks) can be easily incorporated into the fusion algorithm by treating 
estimates from the microwave radar in a similar manner to the OTHR tracks. 

Some properties of the microwave radar tracks that should be noted, are 

• The tracks generally only have a single propagation path associated with them (ex- 
cept in occasional anomalous circumstances), hence any two tracks from the same 
microwave radar will not, in general, be from the same target. 

• The microwave radars are generally not co-located with the OTHR hence transfor- 
mations need to be provided to a common ground coordinate system. 

• Covariance matrices for the microwave track estimates are often not available in 
legacy systems, hence approximations of these covariance matrices may need to be 
made. 

Let us now consider how microwave radar tracks would be incorporated into the hy- 
pothesis tree. Essentially the microwave radar tracks can be treated almost identically to 
the OTHR tracks. The microwave radar tracks arrive asynchronously with respect to the 
OTHR tracks; however, this is simply accommodated through the use of the predictions 
that are produced by the MPTF target model. For example, if, say, two OTHR tracks 
result in the creation of the hypothesis tree at update k — 0 and a microwave radar track 
is introduced at time k = 1 then the tree at k — 0 is simply extrapolated to k = 1 and then 
extended to 3 tracks using the microwave radar data. Figure 10 shows the path indepen- 
dent hypothesis tree for this example. The path dependent tree will of course incorporate 
the number of paths occuring with each of the OTHR tracks and only one "path" for the 
microwave radar track. The "path" for the microwave radar track is the transformation 
from the microwave radar's coordinates to the common ground coordinates that are used. 

The code for incorporating microwave radar tracks into the DMPTF algorithm has 
been implemented in the test-bed, and is expected to be tested in the near future on real 
track data. The main extension that was required was to derive the transformations for the 
microwave radar tracks to the common ground coordinates. The JFAS ground coordinates 
were chosen to be the common coordinate system, ie, range and azimuth relative to the 
receive array, with the receive array boresight corresponding to zero azimuth. 

The same principles that have been applied to fusing the OTHR multipath tracks with 
microwave radar tracks apply to fusion of OTHR and GPS tracks, as well as fusion of 
multipath tracks from multiple OTHRs in an overlapping network. With GPS tracks the 
method of fusion with OTHR tracks is essentially identical to that for fusion of microwave 
radar and OTHR tracks. In the case of multiple OTHRs, each OTHR will have a different 
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Figure 10: Path independent hypothesis tree for two OTHR tracks at time k = 0 and one 
microwave radar track at time k — 1 

set of multiple paths, but this is easily accommodated in the DMPTF algorithm. With 
regard to coordinate systems, a common ground coordinate system will be required as 
opposed to the polar coordinates referenced to JFAS that is used at present. In principle 
this poses no difficulties other than the requirement for more computation to be performed 
to convert to the common coordinates. 

A point worth making here is that, in general, microwave radar tracks and GPS tracks 
are much more accurate than OTHR tracks. This fact can be used to improve coordinate 
registration (CR) of the OTHR where microwave radar or GPS tracks are available. For 
example, if the registration of the OTHR is initially good enough to perform correct 
association of a group of multipath OTHR tracks with, say, their corresponding microwave 
radar track, then the offset between the OTHR tracks and the microwave radar track can 
be used to perform corrections to the OTHRs slant to ground coordinate transformations. 
Because the height of ionospheric layers can be expected to not change abruptly, the 
corrections will be able to be utilized for regions around the tracks as well. The extent of 
these regions, and the degradation in the accuracy of the CR corrections as a function of 
distance from the registered tracks would need to be determined by experiment. 
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10    Summary and Conclusions 

A dynamic multipath fusion (DMPTF) algorithm which is capable of fusing over-the- 
horizon radar (OTHR) multipath tracks and non-OTHR tracks (e.g. microwave radar or 
GPS), as well as dealing with multipath tracks from OTHR networks is presented in this 
report. The algorithm achieves this through a very general model based approach which 
can deal with both the multipath effects within a single OTHR as well as asynchronicity 
between multiple sensors. Important advances of the algorithm presented in this report 
over earlier related work, ie, [17], [18] and [19] are: 

• The new algorithm can associate and fuse asynchronous track data, thus making 
combined multisensor-multipath track fusion possible; particularly of interest is the 
algorithm's direct applicability to fusion with microwave radar, GPS and multiple 
OTHR tracks. 

• The new algorithm takes into account temporal relationships between multipath 
and multisensor tracks as well as the instantaneous spatial relationships. This is of 
theoretical importance in addition to benefitting performance. 

• An adjunct algorithm which can effectively deal with increases and decreases in the 
number of tracks with time in DMPTF's hypothesis tree has been developed. This 
is important for achieving temporally consistent association hypotheses and fused 
tracks. Without this, each time a multipath track drops out, a new hypothesis tree 
would need to be constructed, losing all the information in the previous tree. 

• An effective and efficient pruning algorithm, as well as a clustering algorithm have 
been developed which together enable association and fusion of very large numbers 
of tracks. This has been tested on the JFAS OTHR in an operational setting showing 
that the DMPTF algorithm together with the associated pruning and clustering can 
successfully deal with all the tracks in the entire coverage area of the radar in real 
time. 

• A set of equations have been derived for the association and fusion of the measure- 
ments from which the multipath and multisensor tracks are created. This enables 
an alternative fusion approach where some sources of track dependence are avoided. 

The DMPTF algorithm has been implemented in C++ in a test-bed, for trialling with 
simulated and real data, and also implemented as a prototype on the JFAS OTHR for 
testing in an operational setting and for collection of data for statistical analysis. To date, 
testing has centred on multipath data from the JFAS radar. Code has also been imple- 
mented for fusion with microwave radar tracks which awaits testing. Considerable effort 
was invested in the development of the C++ code for DMPTF to achieve modularity, ex- 
pandability, and maintainability, and a semi-automated software documentation program 
was implemented. As an outcome, it should be relatively easy to further develop the code 
and transfer it to another target system such as JÖRN if required. 

With regard to performance, testing of DMPTF with OTHR multipath tracks (ie, real 
data) has been performed on a development test-bed from early stages in its development. 
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Recently an extended trial of the algorithm has been performed on the JFAS radar, and 
a large amount of data collected for statistical analysis. While the statistical analysis 
has not yet been completed, early indications are that the algorithm performs well when 
good coordinate registration (CR) data is available. However, when the CR data is poor, 
incorrect associations often occur. Hence, at the present level of development of DMPTF 
and the CR system, the DMPTF algorithm is capable of being used in a semi-automated 
fashion to give advice to an operator, but operator overseeing is still required. Higher 
levels of automation can be expected with further development of both DMPTF and CR. 

Further operational assessment and development is strongly recommended. In partic- 
ular: 

• The code for automatically associating and fusing multipath OTHR tracks should 
be further operationally assessed and enhanced. 

• The code for fusion of OTHR and microwave radar tracks which has been imple- 
mented should be assessed. 

• The fusion of tracks in OTHR networks in regions of overlapping surveillance cover- 
age should be implemented and assessed. 

• The potential for improving OTHR coordinate registration accuracy via feedback 
from other surveillance sensors should be developed. 

• Further research on track dependence and development of a realistic ionospheric 
model (the two are related) should bear fruit with regard to improving performance. 

54 



DSTO-RR-0223 

Authors' Contributions 

The contributions of the authors were as follows: 

Peter Sarunic performed the first principles derivation of the static MPTF, and pro- 
posed and led the development of the new pruning algorithm. He conceived and performed 
the mathematical derivations of the dynamic multipath track fusion algorithm, proposed 
the extension of DMPTF to perform fusion of selected measurements to reduce data de- 
pendence, and derived the equations for doing this. He also wrote the core of the C++ 
code for the fusion algorithms and led the subsequent coding and testing. 

Kruger White, who had been working on multipath fusion for some time prior to 
the work presented in this report, provided much useful information and advice based 
on his earlier work on the problem, including advice on limitations he had encountered 
with the earlier fusion algorithm. He also developed coordinate transformation software, 
participated in literature surveys, particularly on track dependence, and proposed the 
investigation of the Co-variance Intersection technique. 

Mark Rutten joined the team shortly after the commencement of the work which is 
the subject of this report. After Peter's original coding of the static MPTF code in C++, 
Mark coded extensions to include pruning, target dynamics and clustering. He contributed 
to the development of the K-best search algorithm and developed the theoretical aspects 
of clustering (not covered in this report). He also contributed to testing of algorithms. 

Acknowledgements 

The authors would like to thank Peter den Hartog and Kim Kieu for their efforts in the 
implementation and testing of the DMPTF software. Peter den Hartog performed integra- 
tion of the software with the JFAS radar, organised trials, and did some of the graphical 
display work for the test-bed software. He also developed a web-site for presentation of 
algorithm developments. Kim did the major part of the display graphics for the test-bed 
and the integration of DMPTF with the graphics software. Both Kim Kieu and Peter den 
Hartog, contributed to the testing of the fusion algorithms and associated software. Their 
efforts are much appreciated. While John Percival did not participate significantly in the 
work presented in this report, he played a key role in the earlier work on Multipath Track 
Fusion which is referenced in this report, for which his efforts are recognized. 

55 



DSTO-RR-0223 

References 

1. G. Adelson-Velskii and E. Landis, "On an Information Organization Algorithm", Dok- 
lady Akademica Nauk SSSR, Vol. 146. pp. 263-266, 1962. 

2. M. Azmoodeh, "Abstract Data Types and Algorithms", MacMillan, 1988. 

3. Y. Bar-Shalom and T.E. Fortmann, "Tracking and Data Association", Academic 
Press, Inc., 1988. 

4. Yaakov Bar-Shalom and Xiao-Rong Li, "Estimation and Tracking: Principles, Tech- 
niques and Software", Artech House, 1993. 

5. Yaakov Bar-Shalom and Xiao-Rong Li, "Multitarget-Multisensor Tracking: Principles 
and Techniques", Yaakov Bar-Shalom, 1995. 

6. L. Comtet, "Advanced Combinatorics -The Art of Finite and Infinite Expansions", D. 
Reidel Publishing Company, Dordrecht, Holland, 1974. 

7. C.Y. Chong, S. Mori, and K.C. Chang, "Distributed multitarget multisensor track- 
ing" in Multitarget Multisensor Tracking: Advanced applications, Y. Bar-Shalom, Ed., 
Norwood MA: Artech House, 1990, pp 247-295. 

8. I.W. Dall and D.J. Kewley, "Track Association in the Presence of Multi-Mode Prop- 
agation", Proc. International Conference on Radar 92, IEEE Publication 365, pp. 
70-73, 1992. 

9. C.A.R. Hoare, "Proof of a Program: FIND", CACM, Vol 14, No.l, pp 39-45, Jan 
1971. 

10. J.H. Kingston, "Algorithms and Data Structures", Addison Wesley, 1990. 

11. J.L. Krolik and R.H. Anderson, "Maximum Likelihood Coordinate Registration for 
Over-the-Horizon Radar", IEEE Trans, on Signal Proc. 45, 935-959, 1997. 

12. T. Kurien, D. Logan and W.P. Berry, "Fusion of OTH Radar Data", Proc. Seventh 
Joint Service Data Fusion Symposium, pp. 221-235, 1994. 

13. M.E. Liggins, C.Y. Chong, I. Kadar, M.G. Alford, V. Vannicola and S. Thomopoulos, 
"Distributed Fusion Architectures and Algorithms for Target Tracking", Proc. of the 
IEEE 85, 1, pp 95-107, 1997. 

14. S. Mori, K.A. Demetri, W.H. Barker and R.N. Lineback, "A Theoretical Foundation 
of Data Fusion - Generic Track Association Metric", Proc. Seventh Joint Service Data 
Fusion Symposium, pp. 585-594, 1994. 

15. Lucy Y. Pao, "Measurement Reconstruction Approach for Distributed Multisensor 
Fusion", Journal of Guidance, Control, and Dynamics, Vol 19, No. 4, pp. 842-847, 
Jul-Aug 1996. 

16. Lucy Y. Pao and Michael Kalandros, "Algorithms for a Class of Distributed Architec- 
ture Tracking", Proc. of the American Control Conference, Albuquerque, New Mexico, 
pp. 1434- 1438, June 1997. 

56 



DSTO-RR-0223 

17. D.J. Percival and K.A.B. White, "Multipath Track Fusion for Over-the-Horizon 
Radar", Proc. SPIE 3163, pp. 363-374, 1997. 

18. D.J. Percival and K.A.B. White, "Multipath Coordinate Registration and Track 
Fusion for Over-the-Horizon Radar", accepted, Signal Proc. Special Issue for the 
DSTO/AFOSR Signal Processing Workshop, Victor Harbour, South Australia, 1997. 

19. D.J. Percival and K.A.B. White, "Multihypothesis Fusion of Multipath Over-the- 
Horizon Radar Tracks", Proc. SPIE 3373, pp.440-451, 1998. 

20. R.L. Popp, K.R. Pattipati and Y. Bar-Shalom, "m-best SD Assignment Algorithm 
with Application to Multitarget Tracking", Proc. SPIE 3373, pp.475-495, 1998. 

21. W. Pugh, "Skip Lists: A Probabilistic Alternative to Balanced Trees," Communica- 
tions of the ACM, Vol. 33, pp. 668-676, June 1990. 

22. G.W. Pulford and R.J. Evans, "A Multipath Data Association Tracker for Over- 
the-Horizon Radar", IEEE Trans, on Aerospace and Electronic Systems, Vol. 34, pp 
1165-1183, October 1998. 

23. D.B. Reid, "An Algorithm for Tracking Multiple Targets", IEEE Trans, on Automatic 
Control, December 1979. 

24. P.W. Sarunic, M. Rutten, D.J. Percival and K.A.B. White, "Hypothesis Management 
for Over-the-Horizon Radar Multipath Track Fusion", Proc. EuroFusion99 Interna- 
tional Conference on Data Fusion, pp 217-224, Oct. 1999. 

25. P.W. Sarunic, M.G. Rutten, "Over-the-Horizon Radar Multipath Track Fusion Incor- 
porating Track History", Proc. Fusion2000 Conference, pp TuCl-13 to TuCl-19, July 
2000. 

26. R. Sedgewick, "Algorithms", Second Edition, Addison- Wesley, 1988. 

27. J.K. Uhlmann, "General Data Fusion for Estimates with Unknown Cross Covari- 
ances", Proc. SPIE 2755, pp. 536-547, 1996. 

28. J. Zhu, R.E. Bogner, A. Bouzerdoum and M.L. Southcott, "Application of Neural 
Networks to Track Association in Over the Horizon Radar", Proc. SPIE 2233, pp. 
224-235, 1994. 

57 



DSTO-RR-0223 

Appendix A:      Summary of Errors in Previously 
Derived MPTF Equations 

This appendix summarizes errors found in some of the static equations presented in [17] 
and [19]. The equations were determined by analogy arguments from multisensor fusion 
work published in the literature; however, the translation to the multi-path fusion prob- 
lem domain incurred some mistakes. The equations in question are the counterparts of 
equations 2, 3, and 5 in section 2 of this report. In [17] and [19] two probability update 
equations are presented. The equations are presented below using the notation of [19]. 
The reader is referred to the papers in question for a detailed description of the notation, 
as well as a description of how the equations were obtained. 

Pr{\\ZkUZk,Dk} = (Al) 

j C-1Pv{X\Zk,Dk} ßlm'\k), r/mt) G A,   r/m° £ A, 

\ C-1Pv{X\Zk,Dk} ßlmi\k) L{T^'m^\Z\Zk,Dk),   TM0 = f^ U 7j(mi) G A 

The first equation is the probability update for a track estimate which is assumed to be 
due to a new target for the hypothesis in question. The second is the probability update 
for a track estimate that represents the same target as at least one previously hypothesized 
target. 

The second of equations Al has a likelihood term which in reference [17] is obtained 
using the following relationship 

L(r1
(mi)Ur2

(m2)|Z1
fcUZ2

fe)= (A2) 

27T (P^i) + P#*>) |-*exp \-\ (y<mi) - yt2))' (P$?l) + 4m2)) "' Of"0 - Vt2)) 

whereas in [19] the likelihood term is determined using the equation below 

L(r^\Zk,Zk,Dk) =p-' |27rnrW \-\ (f^ - y^'lT1 (^*> - gfm'>) (A3) 

with 

n = pf° + p^i] 

and where p is the a priori target density. 

Firstly, in both of the probability update equations Al there is a normalization constant 
C_1. The way to determine its value is not given in either of the papers; however, in an 
implementation of the static MPTF algorithm based on the above papers, C was taken to 
be the sum of the unnormalized probabilities at level k of the hypothesis tree, ie, 

C=     Yl    Prunnormalized{X\ZkUZk,Dk} (A4) 

All A at 
level k 
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This is, in fact, incorrect as can be seen from equation 2 in section 2 of this report. 

Secondly, comparing the first equation with equations 2, 3 in section 2, shows that it 
is missing a 1/VS term. This is of course important, as it affects the relative magnitude 
of the probabilities for new-target hypotheses when compared to hypotheses assuming an 
already existing target. 

Thirdly, because equation A4 was mistakenly used for normalization, it made the 
second probability equation of equations Al dimensionally inconsistent if the likelihood 
equation of reference [17] (ie, equation A2) is used for the likelihood term. To compensate 
for this, an adjustment was made to the likelihood equation (ie, adding the p_1 term, 
where p is an assumed target density), giving equation A3 which was presented in [19]. 
Unfortunately, this adjustment still did not correct the equations, as can be seen by 
comparison with equations 2 and 5 in section 2 of this report. 
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